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Sorry for the bait-and-switch. This is not a review about the role of parasitic infections and lung scarring.
Instead, the manuscript by Sack et al. [1] in this issue of the European Respiratory Journal gives us the
opportunity to consider the relationship between air pollution, or “bad air” (the literal translation of the
contracted Italian words mala aria), and the development of, and progression from, early stages of
pulmonary fibrosis.

Major sources of outdoor air pollution include primary emissions generated from motor vehicles, power
plants and forest fires, as well emissions resulting from industrial, residential and agricultural combustion.
Sources of secondary outdoor pollution include gases and particulates generated by the interaction
between primary emissions and the atmosphere. Air pollution can similarly occur from indoor emissions
generated by tobacco smoke and from the burning of solid fuels often compounded by poor ventilation
[2]. Examples of primary air pollutants include suspended particulate matter (PM), nitrogen oxides (NOy)
and sulfur oxides (SO,), while examples of secondary pollutants include ozone (O;) and sulfuric acid
(H,SO,). Particulate matter is often classified as coarse dust particles (PM;,) and fine particulates (PM, 5)
[3]. Measures of NOy exposure in general, and nitrogen dioxide (NO,) exposure in particular, are
frequently used as surrogates for exposure to the myriad of traffic related emissions [4], while Os is a
secondary pollutant whose correlation with primary pollutants can be more variable.

In addition to the growing scientific consensus on the adverse outcomes associated with air pollution
exposure experienced by those with cardiovascular disease [5] and with obstructive respiratory diseases
such as asthma and chronic obstructive pulmonary disease [6-8], studies have also demonstrated that air
pollution exposure may result in adverse outcomes in patients with pulmonary fibrosis [9-11]. In
longitudinally followed cohorts of patients with idiopathic pulmonary fibrosis (IPF), increased short-term
exposures to higher levels of O3 exposure has consistently been associated with increased rates of acute
exacerbations, while findings for NO, have been discordant between studies [9, 10]. Positive associations
between increased particulate matter (PM;, and PM, 5) exposure and important IPF outcomes, such as an
accelerated decline in forced vital capacity and an increased rate of mortality, have also been demonstrated
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but the results are variable between studies [10, 11]. In total these findings suggest that outdoor air
pollution in general, and perhaps higher levels of ozone (or factors closely related to ozone exposure) in
particular, may lead to disease progression and acute exacerbations in IPF patients.

Could bad air also lead to the early development of pulmonary fibrosis? It is worth noting that over
40 years ago exposure to indoor air pollution was suggested to be a cause of pulmonary fibrosis in a
resource poor setting [12]. Before evaluating this question, it is important to briefly review the literature
on the development of early pulmonary fibrosis. Germ line genetic mutations (i.e. genetic factors passed
down from our parents) substantially increase the risk of developing IPF [13, 14], a disorder that generally
presents late in life. Late onset, and incomplete penetrance of genetic factors, suggests additional exposures
probably contribute to IPF disease pathogenesis. Furthermore, because IPF is often defined by advanced
fibrotic imaging findings [15], it is logical to presume that those at risk for developing clinically apparent
IPF transition through a period where their imaging findings are more subtle, and their clinical syndrome
is less apparent. Studies attempting to identify people with these more subtle imaging findings have
assessed chest computed tomography (CT) scans of undiagnosed participants in research cohorts using
both qualitative [16-27] and quantitative [28-33] imaging metrics. These studies have demonstrated that
both qualitatively assessed interstitial lung abnormalities (ILA) and increased measures of quantitative
metrics are more common than IPF is reported to be, and that research participants with these imaging
abnormalities are also more likely to have genetic predictors noted in IPF patients [17, 20, 22, 33, 34],
restrictive physiologic and exercise impairments [16-18, 27, 29, 33], radiologic progression (e.g. interval
development of fibrosis in general, and IPF in particular) [20], accelerated lung function decline [20], and
an increased risk for death [21, 27, 33]. In total these studies suggest that clinically apparent IPF may arise
from a larger, but similarly genetically predisposed, group beginning to develop detectable imaging
findings. The hunt is now on, to determine the additional factors that contribute to subclinical pulmonary
fibrosis and the transition between subclinical and clinical disease.

In this issue of the European Respiratory Journal, Sack et al. [1] present the first assessment of the
associations between measures of air pollution and both qualitative and quantitative imaging metrics of
subclinical pulmonary fibrosis in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Individual
estimates of air pollutant exposures were generated from measurements obtained from community sources,
as well as a sample of participant homes, using previously published spatio-temporal models that have
been demonstrated to explain most of the variation in measurement of these pollutants [35, 36].
Qualitative ILA assessments were performed in 2671 MESA participants with full thoracic chest CT scans,
and quantitative assessments included measures of the progression of high attenuation areas (HAAs, a
quantitative metric of the percent of lung occupied by increased density measures) in 5495 MESA
participants with serial cardiac chest CT scans separated by a follow-up period of nearly 6 years. Sack et al.
[1] demonstrate, in models adjusting for important covariates, that the odds of having ILA in MESA
participants increased by 77% for every 40 parts per billion increment in NO, exposure over a 10-year
period. A similar trend, of borderline statistical significance, was noted between 10-year estimates of NOy
exposure and increases in HAA measures over time. While there was no evidence for effect modification
by sex, there was evidence for effect modification by race (with increased evidence for positive associations
between NO, NO,, and PM,s and HAA progression in analyses limited to non-Hispanic white
participants), and modest evidence for effect modification by tobacco use (with increased evidence for
positive associations between NO, NO,, and PM,s and ILA, and surprisingly an inverse association
between O3 and ILA, in analyses limited to never-smokers).

The strengths of this study include the large, well-characterised cohort, the well-validated assessments of
individual air pollution exposure measures, and demonstration of similar findings between NO, exposure
and two different measures suggestive of early pulmonary fibrosis development. The authors should be
applauded for taking the first steps towards assessing the role that air pollution exposures might play in
the early development of this debilitating lung disease. Replication of these findings in independent
cohorts would provide greater confidence that air pollution exposure avoidance should be considered in
groups at higher risk to develop pulmonary fibrosis.

Some limitations of these findings are also worth considering. It is currently challenging to know how to
interpret discrepant findings between qualitative and quantitative metrics of subclinical stages of
pulmonary fibrosis because, although these metrics are correlated, they are not interchangeable [37]. In
addition, it is also becoming clear that even qualitative assessments of ILA can result in a heterogenous
phenotype that can confound important findings of association. For example, apparent discrepancies
between the associations of the MUCS5B promoter polymorphism [22] (the genetic mutation most
commonly associated with IPF [13, 14]) and ILA between whites and African-Americans are better
explained by different contributions of ILA subtypes, such as a subpleural predominant pattern, in these
populations, than by racial differences in the findings of association [22]. As expected, histopathologic
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differences are also noted between ILA subtypes [38]. In short, not all findings currently characterised as
ILA or that have increased measures of quantitative metrics are likely to represent the same clinical
phenotype. This suggests that future studies should consider phenotypic refinements to determine the
imaging characteristics that best portend subclinical pulmonary fibrosis and the risk for disease
progression.

In conclusion, the study by Sack et al. [1] provides growing weight to the concern that increased exposure
to air pollution might contribute to the development and progression of pulmonary fibrosis and suggests
that environmental exposures could represent a potentially preventable contributor to disease pathogenesis.

The name malaria, derived from the Italian mal aria (or bad air) emanates from the beliefs of some
ancient Romans who observed that the cyclical febrile illness was more common among those who lived
near swamps and developed the disease by breathing the horrible fumes that came from them [39]. While
“draining the swamp” has modern political connotations, it was initially a term used by the Romans to
deal with the problem of malaria. While swamp drainage may have had the unintended consequence of
reducing some mosquito breeding habitats, lack of a complete knowledge of malaria disease pathogenesis
left the ancient Romans to deal with the ravages of malaria for many years to come. The lack of complete
understanding of the medical and environmental consequences of unchecked air pollution and the current
shift in US domestic policy away from combating the problems of air pollution [40] makes the findings of
this work timely.
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