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ABSTRACT Cystic fibrosis is one of the most common autosomal recessive genetic diseases in Caucasian
populations. Diagnosis via newborn screening and targeted nutritional and antibiotic therapy have
improved outcomes, however respiratory failure remains the key cause of morbidity and mortality.
Progressive respiratory disease in cystic fibrosis is characterised by chronic neutrophilic airway
inflammation associated with structural airway damage leading to bronchiectasis and decreased lung
function. Mucus obstruction is a characteristic early abnormality in the cystic fibrosis airway, associated
with neutrophilic inflammation often in the absence of detectable infection. Recent studies have suggested
a link between hypoxic cell death and sterile neutrophilic inflammation in cystic fibrosis and other diseases
via the IL-1 signalling pathway. In this review, we consider recent evidence regarding the cellular responses
to respiratory hypoxia as a potential driver of sterile neutrophilic inflammation in the lung, current
knowledge on hypoxia as a pathogenic mechanism in cystic fibrosis and the potential for current and
future therapies to alleviate hypoxia-driven sterile inflammation.
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Introduction
Cystic fibrosis is one of the most common autosomal recessive genetic disease in Caucasian populations of
European descent [1, 2], with an incidence of 1 in 3630 live births in Australia [3]. Diagnosis via newborn
screening and targeted nutritional and antibiotic therapy has improved outcomes so that the median
long-term survival is now into middle adulthood [4–6]. However, respiratory failure remains the key cause
of morbidity and mortality and current preventative therapies targeting airways disease have limited
efficacy [4, 5, 7]. Cystic fibrosis results from mutations in the cystic fibrosis transmembrane regulator
(CFTR) gene; mutations in CFTR result in the absence or reduction of functional CFTR anion channels in
the apical membrane of airway epithelial cells, affecting secretion of chloride (Cl

−
), bicarbonate (HCO3

−)
and other anions [8]. Reduced epithelial Cl

−
transport [9] combined with excessive epithelial sodium

(Na+) transport via the epithelial Na+ channel (ENaC) [10–14] results in dehydration of the airway surface
liquid and impaired mucociliary clearance [15]. Depletion of airway surface liquid increases the
concentration and viscosity of the mucus layer, which is exacerbated by hypersecretion of mucins in
chronic airway inflammation [16] and leads to the formation of thickened mucus plaques on airway
surfaces and plugging of the airway lumen [17]. Increased epithelial oxygen consumption associated with
increased ENaC-mediated Na+ absorption [18] combined with luminal hypoxia due to mucus plugging
creates steep oxygen gradients within adherent mucus, unique to the cystic fibrosis airway [17]. The
hypoxic niches within thickened mucus provide a nidus for motile bacteria able to penetrate the mucus
encouraging anaerobic bacterial growth and colonisation [17].

Progressive respiratory disease in cystic fibrosis is characterised by chronic neutrophilic airway
inflammation, typified by increased membrane-bound and free neutrophil elastase activity [19, 20].
Neutrophilic airway inflammation is associated with structural airway remodelling, bronchiectasis and
decreased lung function [20–23]. Mucus obstruction is a characteristic early abnormality in the cystic
fibrosis airway [23], associated with neutrophilic inflammation [24] often in the absence of detectable
infection [20, 22], leading to the question of what drives early sterile inflammation in cystic fibrosis.
Recent studies have suggested a link between hypoxic cell death and sterile neutrophilic inflammation in
cystic fibrosis and other diseases via the IL-1 signalling pathway [25–29]. In this review, we consider
recent evidence regarding the cellular responses to respiratory hypoxia as a driver of sterile neutrophilic
inflammation in the lung, current knowledge on hypoxia as a pathogenic mechanism in cystic fibrosis and
the potential for current and future therapies to alleviate hypoxia-driven sterile inflammation.

Physiological and transcriptional responses to respiratory hypoxia
Respiratory hypoxia is uniquely characteristic of the cystic fibrosis airway; although, young children with
cystic fibrosis are typically normoxic. Two respiratory issues evident in children with cystic fibrosis are
regional hypoxia in the airway lumen due to obstructive mucus plugging [20, 22, 23] and increased
epithelial oxygen consumption most likely due to elevated Na+/K+ ATPase activity involved in increased
ENaC-mediated Na+ absorption [10, 11, 15, 18]. Both abnormalities may result in airway epithelial cells
vulnerable to cellular hypoxia and ensuing necrosis [27]. Hypoxaemia is also present in patients with
chronic or advanced lung disease [30]. Increased oxygen consumption creates steep oxygen gradients
within thickened mucus in airway surface liquid and hypoxic niches primed for anaerobic growth of
Pseudomonas aeruginosa, driving antibiotic resistance in biofilms observed in cystic fibrosis [17, 31].
However, significant inflammation in the absence of respiratory infection is present at diagnosis in a
majority of infants with cystic fibrosis, and significant gas trapping is observed [20, 32].

Physiological responses to respiratory hypoxia
Alveolar oxygen pressure during normoxia is unusually high [33–35], and thus respiratory hypoxia occurs
at a higher oxygen tension compared with other organs. Even moderate levels of alveolar hypoxia
experienced at high altitudes are sufficient to trigger an inflammatory phenotype. Elevated presence of
macrophages, neutrophils and inflammatory cytokines have been observed in bronchoalveolar lavage fluid
(BALF) isolated from humans exposed to hypobaric hypoxia [36]. With significant gas trapping [20, 32]
and episodes of nocturnal oxygen desaturation [37] observable in infants with cystic fibrosis, the
physiological response to hypoxia may play a role in early lung damage in cystic fibrosis. The physiological
response of the pulmonary vascular system to hypoxia is hypoxic pulmonary vasoconstriction, resulting
from hypoxia-induced K+ current inhibition and membrane depolarisation in pulmonary arterial smooth
muscle cells [38, 39]. Significant abnormal pulmonary perfusion has been observed in infants and young
children with cystic fibrosis suggesting perfusion deficits are associated with airway disease, even when
clinically stable [23]. Chronic pulmonary vasoconstriction can lead to pulmonary hypertension, and
vascular remodelling caused by chronic hypoxia and hypertension may contribute to structural
remodelling observed in early cystic fibrosis lung damage [32, 40].
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Transcriptional responses to respiratory hypoxia
The transcriptional response to hypoxia has also been extensively studied in vivo and in vitro, elucidating
important factors involved (figure 1). Hypoxia-inducible factor (HIF)-1 plays a vital role in the response to
hypoxia, inducing the transcription of proteins to increase oxygen availability. The HIF-1 complex exists
as a heterodimer, consisting of subunits HIF-1α and HIF-1β [41]. HIF-1β is constitutively expressed,
whereas HIF-1α expression is facultative and regulated in an oxygen-dependent manner. During
normoxia, HIF-1α is hydroxylated by prolyl hydroxylase domain (PHD) proteins using oxygen as a
substrate, leading to interactions with the von Hippel–Lindau (VHL) E3 ligase complex, subsequent
ubiquitination, and proteosomal degradation of HIF-1α [42–44]. As the degradation of HIF-1α requires
oxygen for PHD activity and ubiquitination via VHL, hypoxic conditions result in the stabilisation and
translocation of HIF-1α [43]. In cystic fibrosis, lack of CFTR function affects HIF-1α stabilisation, with in
vitro experiments finding lower expression of HIF-1α in cystic fibrosis airway epithelial cells during
hypoxia when compared to healthy controls [45]. This is possibly due to impaired control of intracellular
reactive oxygen species (ROS) [46] resulting from loss of CFTR transport of the antioxidant glutathione
[47, 48], affecting the adaptive response to hypoxia in cystic fibrosis [49].

NF-κB transcription during hypoxia
Even though HIF-1α is the predominant transcription factor activated during hypoxia, activation of NF-κB
is another critical and largely HIF-1α-independent transcriptional response [50]. During hypoxia,
activation of NF-κB is rapid, persistent and IκB kinase (IKK) dependent, instigated by the
phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor- alpha
(ΙκΒα) [50, 51]. Inhibition of PHDs during hypoxia increases IKK-β catalytic activity [52], resulting in
greater ΙκΒα phosphorylation and NF-κB activation [51, 53]. The initial activation of NF-κB is too rapid
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FIGURE 1 Transcriptional response to hypoxia in normal and cystic fibrosis airways. Hypoxia-inducible factor
(HIF)-1α plays a central role in the transcriptional response to hypoxia. In normal airways, under normoxic
conditions HIF-1α is hydroxylated by prolyl hydroxylase domains (PHDs) and through subsequent interactions
with the von Hippel–Lindau (VHL) E3 complex, marked for ubiquitination and proteosomal degradation. Under
hypoxic conditions, PHD activity is inhibited and HIF-1α is stabilised. Hypoxia also results in the efflux of
intracellular glutathione (GSH) via cystic fibrosis transmembrane conductance regulator (CFTR), causing
intracellular reactive oxygen species (ROS) to accumulate, contributing to increased HIF-1α stabilisation. In
cystic fibrosis airways, impaired ventilation due to airway mucus obstruction and increased epithelial sodium
channel (ENaC) activity result in cellular hypoxia of airway epithelial cells. Hypoxia causes Ca2+ influx and
calcium/calmodulin-dependent protein kinase type II (CAMK2) activation, transforming-growth-factor-
β-activated protein kinase 1 (TAK1) activation and subsequent nuclear factor κB (NF-κB) activation. In the
absence of functioning CFTR, there is increased intracellular GSH and lower ROS generation, resulting in
reduced stabilisation of HIF-1α.

https://doi.org/10.1183/13993003.00903-2016 3

CYSTIC FIBROSIS | S.T. MONTGOMERY ET AL.



for a transcriptional response to hypoxia; instead Ca2+ dependent activation of Ca2+/calmodulin-
dependent protein kinase II (CAMK2) occurs prior to the inhibition of PHDs [54]. This demonstrates
hypoxia-induced IKK-IκBα phosphorylation and subsequent NF-κB activation is largely HIF-1α
independent [50], with basal activation of NF-κB required for HIF-1α accumulation under hypoxia [55].
However, activation of NF-κB during hypoxia is reduced in cells lacking functional CFTR, suggesting an
impaired response in cystic fibrosis [56]. These data highlight the multifaceted transcriptional and
physiological response to respiratory hypoxia, and the interconnectivity between classic hypoxia-response
genes and the NF-κB inflammatory pathway. Furthermore, these mechanisms may be relevant in cystic
fibrosis lung disease, with reduced NF-κB activation [56] and lower HIF-1α stabilisation in cells lacking
functional CFTR, contributing to an impaired response to hypoxia in cystic fibrosis.

Hypoxia and inflammation in cystic fibrosis
Chronic neutrophilic airway inflammation is a key factor in driving mortality and morbidity present in
cystic fibrosis. Neutrophil elastase, the primary product of activated neutrophils, is important in host
defence against bacteria such as Pseudomonas aeruginosa [57], but elevated neutrophil elastase can also
result in cleaving of chemokine receptors on immune cells, compromising their capacity to kill bacteria
[58]. Elevated neutrophil elastase also exacerbates ion transport imbalance in cystic fibrosis, activating
near-silent ENaC transport and degrading CFTR channels and disabling ion transport [59, 60]. Detection
of free neutrophil elastase in BALF is the most significant predictor for presence of bronchiectasis in early
cystic fibrosis [22] and neutrophil elastase was linked to structural lung damage in mice with cystic
fibrosis-like lung disease [19]. Airway infection is a predominant and persistent cause of neutrophilic
inflammation in cystic fibrosis [61]. However, inflammation can be seen in asymptomatic children with
cystic fibrosis without lower airway colonisation [32], and the pathogenesis of non-infectious inflammation
in these cases is poorly understood. Recent studies in βENaC-overexpressing mice with cystic fibrosis-like
lung disease [11, 62] led to novel insights how mucus obstruction may be linked to neutrophilic
inflammation in early cystic fibrosis lung disease. First, a study utilising this model of cystic fibrosis lung
disease derived in germ-free conditions observed airway mucus obstruction and persistent inflammation in
the absence of bacteria, with significantly higher neutrophil presence in BALF compared with germ-free
wildtype mice [63]. These results suggest that mucus plugging per se can trigger chronic airway
inflammation even in the absence of bacterial infection. Early neutrophilic inflammation is important in
the pathogenesis of cystic fibrosis, with neutrophils and airway mucus plugging present in infants at
diagnosis [20, 32]. Second, studies in βENaC-overexpressing mice with cystic fibrosis-like lung disease
demonstrate that airway mucus plugging is associated with cellular hypoxia resulting in necrosis of airway
epithelial cells [24]. Additionally, a recent study demonstrated that necrosis of airway epithelial cells is a
characteristic finding in cystic fibrosis patients and that necrotic airway cells are correlated with the
severity of mucus plugging in small airway lung sections [27]. These results suggest that elucidating the
link between hypoxia-driven epithelial necrosis and early neutrophilic inflammation may be vital in
attenuating cystic fibrosis-associated morbidity and mortality.

Sterile inflammation
Unlike inflammation resulting from infection, driven by the toll-like receptor network, sterile
inflammation during hypoxia is mediated via the activation of interleukin-1 receptor (IL-1R) (figure 2)
[25, 27]. Activation of IL-1R occurs when hypoxic cells undergoing necrosis release IL-1α, which acts as a
danger-associated molecular pattern molecule [25, 27]. The inflammatory role of IL-1 has been thoroughly
investigated in a number of inflammatory [64] and hypoxic diseases such as ischaemia, where it influences
inflammation in the cerebrum [29], as well as renal [65] and cardiac systems [66, 67]. CHEN et al. [25]
determined that IL-1α, not IL-1β was responsible for the inflammatory response to cell death using in vivo
knockout murine models. A recent study by FRITZSCHING et al. [27] also demonstrated that epithelial
necrosis in the airways of βENaC-overexpressing mice is associated with an increase in neutrophils in
BALF, as well as elevated IL-1α levels. Interestingly, genetic deletion and pharmacological inhibition of
IL-1R resulted in significantly reduced airway neutrophilia airway mucus obstruction and structural lung
damage, but had no effect on airway epithelial necrosis or IL-1α in BALF [27].

Necrotic airway cells trigger a sterile inflammatory response by the passive release of IL-1α, which is
trafficked to the nucleus and contained during apoptosis [68]. However during necrosis, IL-1α is released
from cells in biologically active uncleaved and cleaved forms [25, 69]. Furthermore, extracellular IL-1α
released from primary airway epithelial cells exposed to oxidative stress is able to trigger an inflammatory
phenotype in lung fibroblasts [70], reiterating the inflammatory capacity of IL-1α during necrosis. IL-1α
exists natively as a precursor protein that is cleaved via calpain [71], but cleavage can be inhibited by
binding of IL-1α to IL-1R2 [72]. Intriguingly, IL-1R2 expression is reported to be absent in both
immortalised airway epithelial cell lines and primary airway epithelial cells, which suggests airway
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FIGURE 2 Transcriptional inflammatory response to hypoxia and cellular necrosis. Cellular hypoxia results in
the release of IL-1α through two mechanisms – hypoxic necrosis of epithelial cells passively releasing IL-1α,
or through Nod-like receptor protein 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)
generation and cell products released from cells undergoing necrosis. Binding of IL-1α to IL-1R recruits
MyD88 to the IL-1R:IL-1RAcP complex, and results in activation of transforming-growth-factor-β-activated
protein kinase 1 (TAK1) by interacting with IL-1 receptor-activated protein kinase (IRAK1):tumour necrosis
factor receptor-associated factor 6 (TRAF6). TAB1 phosphorylates IκB kinase (IKK) γ, which binds to IKKα and
IKKβ activating the IKK complex. The IKK complex phosphorylates nuclear factor κB (NF-κB) inhibitors IκBα
and IκBβ, subsequently activating NF-κB1. Initial activation of NF-κB during hypoxia is mediated by
intracellular Ca2+ activating calcium/calmodulin-dependent protein kinase type IIA (CAMK2A), which activates
TAK1 and the subsequent pathway prior to IL-1α release. Hypoxia also inhibits egl-9 family hypoxia-inducible
factor 2 (EGLN2) degrading IKKβ, increasing catalytic activity and greater NF-κB activation.
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epithelial cells lack the ability to regulate IL-1α activity due to an inability to express IL-1R2 [73], which
may contribute to the hyper-inflammatory response observed in cystic fibrosis.

IL-1α role and regulation
Aside from the release from necrotic cells, there is a paucity of data about the regulation and physiological
role of IL-1α. Previously, it was believed that IL-1α was only secreted passively from cells undergoing
non-apoptotic cell death [25]; however, recent studies have demonstrated alternative control of IL-1α.
WILLART et al. [74] have shown that IL-1α is secreted from airway epithelial cells following exposure to
house dust mite, potentially affecting the inflammatory response in cystic fibrosis patients with reduced
allergen clearance due to impaired mucociliary clearance. Recent studies have determined that the Nod-like
receptor protein 3 (NLRP3) inflammasome regulates the active release of IL-1α and IL-1β [75–77].
Stimulation via toll-like receptor signalling is sufficient to upregulate pro-IL-1β and to induce cell surface
expression of IL-1α, but is insufficient for processing and extracellular release [75, 77]. Activation of the
NLRP3 inflammasome results in IL-1β processing and release and extracellular secretion of IL-1α rather
than cell surface expression [75–77]. FETTELSCHOSS et al. [75] confirmed differential IL-1α expression via
biotinylation of surface IL-1α and NLPR3 activation, and discovered IL-1α secreted after inflammasome
activation is not cleaved from the cell surface, but rather secreted from intracellular compartments. The
pathways for IL-1α surface expression and IL-1α secretion are distinctly different, and dependent upon the
activation of caspase-1 and the presence of IL-1β for secretion to occur [75]. As IL-1α does not contain a
caspase-1 cleavage site, dependency upon inflammasome activation and IL-1β can be explained by binding
of IL-1α and IL-1β for transport via IL-1β during transfer from the cytoplasm to extracellular space via
caspase-1 [75]. Active secretion of IL-1α during inflammasome activation is further compounded by
necrotic airway cells during hypoxia, as ATP and mitochondria released from necrotic cells activate the
NLRP3 inflammasome [28]. Hypoxia plays a role in inflammasome activation; mitochondrial ROS
generated during hypoxia [78] have been demonstrated to activate the NLRP3 inflammasome, leading to
pulmonary inflammation [79, 80]. Inflammasome activation also results in significantly increased
neutrophil influx into the airway, supporting a hypothesis for IL-1α regulation in sterile inflammation
driven by hypoxia [28, 81]. The NLRP3 inflammasome is primed for activation by flagellin from bacteria
such as Pseudomonas aeruginosa [82], explaining increased levels activated caspase-1 evident in cystic
fibrosis mice [83], and potentially exacerbating NLRP3 activation in cystic fibrosis.

Neutrophilic inflammation following bacterial infection is mediated by toll-like receptor binding activating
MyD88 and subsequently NF-κB [84]. However, in sterile inflammation the activation of MyD88 and NF-κB
instead results from binding of IL-1α to IL-1R [25] (figure 2). FRITZSCHING et al. [27] determined that IL-1α
released from necrotic airway epithelial cells and subsequent activation of IL-1RMyD88 signalling is an
important pathway in the onset and perpetuation of neutrophilic inflammation in mice with cystic
fibrosis-like lung disease. NF-κB is the key factor for neutrophil recruitment during inflammation [85],
chiefly through release of the neutrophil chemoattractant IL-8 [86]. Hypoxia significantly increases IL-8
produced by alveolar macrophages [87], facilitating increased neutrophil influx to hypoxic areas already
inundated by increased neutrophilia from inflammasome activation [81, 87]. In addition to increasing
neutrophil influx, hypoxia also increases trans-epithelial migration of neutrophils [88] and subsequently the
adherence of neutrophils to airway epithelial cells [89, 90], potentially exacerbating neutrophilic
inflammation in the airway. Macrophages and neutrophils lacking HIF-1α expression have reduced
infiltration and activation in vivo, with HIF-1α a basal regulator of energy metabolism in these cells [91].
Neutrophil survival is also influenced by HIF-1α [92, 93] and hypoxic neutrophils release significantly more
neutrophil elastase [94], which was demonstrated to cause significant destruction of intestinal epithelium
after acute alveolar hypoxia [95]. Finally, hypoxia impairs the killing of bacteria due to reduced oxidative
burst capacity and inhibited glycolysis-induced ATP production [91, 95]. During hypoxia, necrotic cells drive
inflammation by passive and active IL-1α release and subsequent IL-1R activation, resulting in neutrophil
recruitment to the airway. These mechanisms may help explain the exaggerated neutrophilic inflammation
present in early cystic fibrosis, and provide novel targets for anti-inflammatory therapies.

Potential for therapy
IL-1 receptor
IL-1R provides a novel target for attenuation of sterile inflammation in cystic fibrosis and potentially other
chronic inflammatory lung diseases (figure 3). In rheumatoid arthritis, a disease characterised by IL-1α
driven inflammation, inhibition of IL-1R with IL-1R antagonist (IL-1Ra) is efficacious and commonplace
[96]. However, there are limited data on the use of IL-1Ra to limit pulmonary inflammation in a disease
setting. It has been demonstrated that IL-1Ra may reduce oxidative lung injury and neutrophil influx in rats
administered IL-1Ra post-insult with IL-1 [97]. In a murine model of acute lung injury due to ventilation,
IL-1Ra reduced airway neutrophil influx and expression of neutrophil chemoattractant and maintained
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epithelial permeability [98]. Treatment of mice with IL-1Ra also prevented development of pulmonary
fibrosis after inhalation of silica, predominantly affecting lung interstitial cells [99]. Neutrophils isolated from
cystic fibrosis patients release significantly less IL-1Ra compared with neutrophils isolated from healthy
individuals [100], which may suggest an imbalanced anti-inflammatory capacity in the cystic fibrosis airway.
In a cystic fibrosis-like murine setting, pharmacological inhibition of IL-1R using IL-1Ra resulted in almost
complete abrogation of airway neutrophilia and significantly reduced levels of keratinocyte chemoattractant,
an IL-8 orthologue in mice [27]. Inhibition of airway neutrophilia was associated with a significant reduction
in structural lung damage as determined from distal airspace enlargement characteristic of the murine model
[24, 27]. However, the moderate levels of reduction in airway mucus obstruction following IL-1Ra treatment
were not sufficient to improve luminal O2 delivery to levels that results in reduced epithelial necrosis [27].
Even though inhibition of the IL-1R-MyD88 pathway resulted in reduced influx of neutrophils, recruitment
and activation of macrophages remained intact in both the cystic fibrosis-like murine model and in mice
with necrosis-induced inflammation [25, 27]. Therefore, blocking IL-1R signalling via IL-1Ra may limit the
damaging effects of neutrophils without compromising antibacterial host defence [25, 27].

Mucus obstruction
Other potential therapeutic approaches include improved oxygenation via prevention or reduction of airway
mucus obstruction (figure 3). One common therapy currently recommended for improving mucus clearance
in cystic fibrosis is the inhalation of aerosolised hypertonic saline. Although the exact mechanism of action
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FIGURE 3 Potential therapies to alleviate hypoxia-driven inflammation. Potential therapies to alleviate
hypoxia-driven inflammation under investigation target either mucous obstruction causing the hypoxia, or
inhibition of IL-1R to disrupt the IL-1-nuclear factor κB (NF-κB) inflammatory pathway. IL-1R inhibitors such
as IL-1Ra and IL-1R antibodies bind to IL-1R, inhibiting stimulation of IL-1α driven inflammation. Inhalation of
hypertonic saline, cystic fibrosis transmembrane conductance regulator (CFTR) modulators or epithelial
sodium channel (ENaC) inhibitors improve airway surface hydration and mucociliary clearance in cystic
fibrosis airways, alleviating mucus obstruction and resulting hypoxia. ROS: reactive oxygen species; NLRP3:
Nod-like receptor protein 3.
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of hypertonic saline is unknown, it is believed to draw water from epithelial cells and the serosal
compartment via establishment of an osmotic gradient. Hypertonic saline is effective at transiently
improving mucociliary clearance, demonstrated in both cystic fibrosis and non-cystic fibrosis disease [101,
102] and was shown to reduce mucus plugging and mortality effectively in mice with cystic fibrosis-like lung
disease [103, 104]. Pharmacological intervention with the classical ENaC blocker amiloride to inhibit Na+

absorption from cystic fibrosis airway surfaces has also been investigated as a therapy to reduce mucus
obstruction, but resulting in no clinically significant improvements in cystic fibrosis patients with established
lung disease [105, 106]. This is likely due to low potency and short half-life of amiloride on airway surfaces
[107]. However, a recent study utilising a cystic fibrosis-like murine model demonstrated that preventative
treatment with amiloride starting in neonatal mice resulted in significantly reduced airway mucus
obstruction, epithelial necrosis and airway inflammation, supporting that airway epithelial necrosis and
associated inflammation can be reduced by therapeutic targeting of mucus plugging [104, 108]. Long-acting
ENaC inhibitors with higher potency have been developed [109–111], but whether mucus obstruction and
inflammation in established lung disease are abrogated by new therapeutics remains to be seen.

CFTR modulation
CFTR modulators, aimed at rescuing mutant CFTR function, such as ivacaftor and lumacaftor also have
potential to alleviate airway mucus obstruction. Ivacaftor is a potentiator that improves Cl− transport of a
series of mutant CFTR proteins that are expressed at the apical plasma membrane including gating
mutations such as G551D, mutations causing reduced Cl− channel conductance such as R117H, and the
common mutation F508del following correction of its trafficking defect [112–115]. Lumacaftor partially
corrects the protein folding defects present in F508del-CFTR, improving the trafficking of F508del to the
plasma membrane [116]. Both ivacaftor and lumacaftor work to restore CFTR function of responsive
mutations [112, 116], resulting in improving mucociliary clearance and clinical outcomes [117, 118]. Clinical
trials involving combination therapies of ivacaftor/lumacaftor in patients with cystic fibrosis homozygous for
F508del showed significant but modest improvements in lung function in cystic fibrosis patients older than
12 years of age, but it is currently too early to judge clinical significance of observed forced expiratory
volume improvement [119]. Although safety and pharmacokinetics of ivacaftor in children under 6 years of
age has been assessed [120], no controlled clinical trials have been performed, so use of both ivacaftor and
lumacaftor is limited to after structural lung damage and airway mucus obstruction is already present.
Clinical trials of ion transport modulators in young children with no detectable bacterial infection designed
to determine if mucus obstruction and pulmonary inflammation is improved are warranted to provide
insight regarding the roles of such interventions in preventing cystic fibrosis lung disease.

HIF-1α
Hypoxia-driven inflammation is characteristic of ischaemic and inflammatory diseases such as acute lung
injury and colitis. Increased understanding of HIF-1α regulation and downstream pathways is leading to
new opportunities for pharmacological intervention and attenuation of hypoxia-driven inflammation.
HIF-1α is protective during hypoxia, important in maintaining epithelial barrier function [121]. This has
been confirmed by a number of studies using a murine model of colitis [122, 123] and acts through
increased expression of HIF-1-regulated barrier-protective genes, including, intestinal trefoil factor and
CD73 [121]. The respiratory epithelium is important in respiratory hypoxia, with HIF-1α stabilisation in
alveolar epithelium demonstrated to be protective during acute lung injury [124]. This is achieved through
increased glycolytic capacity, improved mitochondrial respiration and concomitant attenuation of lung
inflammation [124]. Hypoxia-induced HIF-1α stabilisation also affects wound healing; HIF-1α and target
gene vascular endothelial growth factor (VEGF) are detectable during wound re-epithelialisation [125].
Furthermore, VEGF is also upregulated during hypoxia [126] and has significant implications in epithelial
wound repair under these conditions [127]. These studies suggest that pharmacological manipulation of
HIF-1α via PHD inhibition may be a therapeutic pathway to induce airway epithelial repair and potentially
attenuate inflammation. Hydroxylase inhibitors such as iron chelators [128] are one therapeutic option that
has shown protective effects in colitis [122, 123]; however, they are largely non-specific for PHD inhibition.
A more suitable approach may be through a recently identified novel class of PHD inhibitor [129], which
acts by preferential binding directly to the PHD active sites. One of these novel inhibitors, TM6008, was
observed to reduce cell death after hypoxic exposure [130]. Therefore, TM6008 may have potential to
reduce the IL-1α driven inflammation that is associated with necrotic cell death in hypoxic disease [27].

Conclusion and future perspectives
Mucus obstruction leading to localised respiratory hypoxia is characteristic in early cystic fibrosis, likely to
contribute to early cystic fibrosis airway pathology. Transcriptional and physiological responses to hypoxia
are altered in cystic fibrosis, with reduced HIF-1α and NF-κB activation in cells lacking functional CFTR
potentially exacerbating inflammation during hypoxia. Neutrophilic inflammation and neutrophil

https://doi.org/10.1183/13993003.00903-2016 8

CYSTIC FIBROSIS | S.T. MONTGOMERY ET AL.



recruitment driven by IL-1α released from necrotic cells resulting from hypoxia is exacerbated by NLRP3
inflammasome activated secretion of IL-1α. Once neutrophils are recruited to the airway, hypoxia
significantly increases their survival, trans-epithelial migration and elastase release. Potential therapies to
alleviate inflammation driven by IL-1R activation include: the use of IL-1R antagonists to inhibit activation
by IL-1α; alleviation of mucus obstruction and resulting hypoxia via use of hypertonic saline to promote
mucociliary transport; inhibition of ENaC-mediated Na+ absorption with ENaC blockers and restoring
CFTR channel function with CFTR modulators to improve airway surface hydration and mucus clearance
and thus prevent mucus obstruction. Therapies to prevent or alleviate inflammation driven by hypoxia are
in early stages of trials, or have previously shown no significant clinical effect. However, these studies used
relatively crude clinical endpoints and none have yet been investigated as interventions to prevent the
onset of structural lung disease [105, 106, 110, 119, 130]. Currently, the majority of targets for therapy are
involved in the initial activation of the inflammatory pathway, but there is little research into activators
further downstream in the pathway (figure 3). Future research could potentially target key genes in the
NF-κB activation process, although such targets are less specific for hypoxia-driven inflammation and may
have system wide effects including further impairment of host defence mechanisms in cystic fibrosis
airways. Further study into the mechanisms of hypoxia-driven inflammation is required to identify feasibly
actionable drug targets. These may include the replication of animal model studies using human-derived
samples. Such studies would directly characterise human responses to hypoxia in the airway and elucidate
specific mechanisms of cell death and IL-1α-driven inflammation. Answering these questions will result in
deeper knowledge of the inflammatory environment within the respiratory system of patients with cystic
fibrosis, with potential to identify targets for treatment to limit sterile inflammation in early childhood.
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