Grading the severity of airways obstruction: new wine in new bottles

Philip H. Quanjer Department of Pulmonary Diseases and Department of Paediatrics, Erasmus Medical Centre, Erasmus University, Rotterdam, the Netherlands

pquanjer@ziggo.nl

Jeffrey J. Pretto Department of Respiratory and Sleep Medicine, John Hunter Hospital, and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia

jeff.pretto@hnehealth.nsw.gov.au

Danny J. Brazzale Department of Respiratory and Sleep Medicine, Austin Hospital, and Institute for Breathing and Sleep, Heidelberg, Victoria, Australia

Danny.Brazzale@austin.org.au

Piotr W. Boros Lung Function Lab, National TB & Lung Diseases Research Institute, Warsaw, Poland

piotr.boros@gmail.com

Correspondence and requests for reprints should be addressed to
Philip Quanjer, Kervel 19, 7443 GT Nijverdal, The Netherlands. E-mail: pquanjer@ziggo.nl

Corresponding author: Philip H. Quanjer, pquanjer@ziggo.nl

Running title: Grading the severity of airways obstruction

Abstract: 200 words (200 allowed)
Manuscript: 3095 words (3000 allowed)
Tables: 3
Figures: 4

Copyright 2013 by the European Respiratory Society.
Abstract

Objective: Redesign current grading of obstructive lung disease so that it is clinically relevant and free of biases related to age, height, sex and ethnic group.

Material: Spirometric records from 17,880 subjects (50.4% females) from hospitals in Australia and Poland, and 21,191 records (53.0% females) from 2 epidemiological studies (age 18-95 years).

Methods: We adopted the American Thoracic Society and European Respiratory Society (ATS/ERS) criteria for airways obstruction based on an FEV1/(F)VC ratio below the 5th percentile and graded the severity of pulmonary function impairment using z-scores for FEV1 which signify how many standard deviations a result is from the mean predicted value.

Results: Using the lower limit of normal for FEV1/(F)VC and z-scores for FEV1 of -2, -2.5, -3 and -4 to delineate severity grades of airflow limitation leads to close agreement with ATS/ERS severity classifications and removes age, sex and height related bias.

Conclusion: The new classification system is simple, easily memorised and clinically valid. It retains previously established associations with clinical outcomes and avoids biases due to the use of percent predicted FEV1. Combined with the Global Lung Function prediction equations it provides a world-wide diagnostic standard free of bias due to age, height, sex and ethnic group.

SHORT SENTENCE OF 130 CHARACTERS OR LESS SUMMARISING THE MOST IMPORTANT FINDINGS:

Using FEV1 z-scores to classify severity of airways obstruction is clinically valid and overcomes bias inherent with %pred.
Introduction

It is accepted that a diagnosis of airflow limitation should be based on an abnormally low ratio of the forced expiratory volume in one second (FEV₁) and vital capacity (expressed as the larger of inspiratory or expiratory vital capacity (VC) or forced expiratory vital capacity (FVC)). Surprisingly there is no universal agreement yet what constitutes a low FEV₁/(F)VC ratio. The European Respiratory Society (ERS) and American Thoracic Society (ATS) [1-3] recommend to regard the 5th percentile of the distribution in a population of healthy lifelong non-smokers as the lower limit of normal (LLN), whereas the Global Initiative on Obstructive Lung Disease (GOLD) [4] recommend to regard a post-bronchodilator ratio of less than 0.70 as indicating persistent airways obstruction. The latter lower limit was arbitrarily selected because of its simplicity, and because it constituted a limit that would not vary with the prediction equation used. Many investigators have documented that the GOLD criterion for defining airway obstruction can result in marked over-estimation of the prevalence of airway obstruction in subjects aged 45 years or older, which may lead to unnecessary medical expenditure, and in under-estimation in younger adults [5]. This is because using a fixed ratio of 0.70 ignores both the natural decline of the FEV₁/(F)VC ratio with age and the sex differences observed in a normal population. The limitations of this approach and the resultant misdiagnoses have been acknowledged by the GOLD group [4]. A standardised approach to interpretation of spirometry utilising the LLN for FEV₁/(F)VC provides a statistically and scientifically more valid approach to defining abnormality in the FEV₁/(F)VC ratio, with consequent reductions in misdiagnoses of pathological airways obstruction and earlier detection of mild disease.

Once a diagnosis of airways obstruction has been made, spirometry values are commonly used to categorise pulmonary function impairment, and the ATS/ERS recommended approach is to use the FEV₁ as a percentage of the predicted value (FEV₁,%pred) as the basis for this classification [3]. Current ATS/ERS recommendations defines an FEV₁,%pred of >70% as mild impairment, 60-69% as moderate, 50-59% as moderately severe, 35-49% as severe and <35% as very severe [3]. This approach uses an arbitrary number of severity categories, using arbitrarily decided cut-off values. However, the use of percent predicted in this way leads to a pronounced age-related bias. For example, the LLN for FEV₁ in elderly healthy subjects and in pre-school children may be as low as 65% and 72% of predicted, respectively [6-7]. The result is that the severity of impairment category corresponds with differing degrees of abnormality for different age groups. A more valid approach would be to take into consideration the underlying distribution of normal lung function data when classifying test results into severity category. The z-score (signifying the number of standard deviations a result is from the mean predicted value) provides a metric for achieving this. A similar
Grading the severity of airways obstruction

approach has previously been shown to provide effective risk stratification for death from respiratory and vascular causes [8].

The objective of the present study is to evaluate an alternative to the ATS/ERS system for grading respiratory impairment to overcome biases related to age, height and sex.

Material
We used adult data from two population based studies: the Health Survey for England (HSE) comprising 9,961 subjects (53.8% female, age 18-93 yr) [9] and the National Health and Nutrition Examination Survey (NHANES III) comprising 11,230 subjects (52.2% female, age 18-90 yr) [10]. All data from these epidemiological studies were included in the analysis, and not just those data used for the derivation of normal predicted values. We also utilised data from three clinical populations: 2,776 records from the Austin Hospital (AH) in Victoria, Australia (49.8% females, age 18-95 yr), 4,258 from the John Hunter Hospital (JHH) in New South Wales, Australia (53.8% females, age 18-95 yr), and 10,846 from the National Research Institute of TB & Lung Diseases (TLDRI) in Warsaw, Poland (47.8% females, age 18-92 yr). The clinical data comprised consecutively collected test results from patients referred for lung function assessment for the typically wide range of clinical purposes seen in large hospital-based clinical laboratories. Tests were conducted between August 2008 and June 2012 (JHH), January 2001 and May 2012 (AH), and April 2009 and June 2012 (TLDRI). All spirometry was performed in accordance with internationally agreed standards applied at the time of data collection [11-12], and only baseline or pre-bronchodilator status data was included in the analysis.

All analyses were limited to those aged 18 years and older and to those of European descent because there were few non-European data in the clinical dataset. This study is a retrospective analysis of de-identified data, obviating the need for approval from local Ethics Committees.

Methods
Predicted values and z-scores were derived for each subject in each dataset using prediction equations from the Global Lung Function Initiative (GLI-2012) [7] using special-purpose software [13]. The z-score indicates the number of standard deviations that a measurement differs from the mean predicted value. Airway obstruction was diagnosed using the ATS/ERS definition [3] of
Grading the severity of airways obstruction

FEV₁/(F)VC < LLN, i.e. the z-score was less than -1.645 [1-3,6-7]. Categorisation of severity of airway obstruction was also made using the 5-category scale recommended by ATS/ERS [3].

Data analysis was performed using the statistical software R [Version 3.0.1; R Foundation, http://www.r-project.org]. As the relationship between the z-score for FEV₁ and FEV₁%pred is symmetrically heteroscedastic (figure 1), the mean z-score was derived at ratios of 0.8, 0.7, 0.6, 0.5, 0.4, 0.35 and 0.30, and subsequently described by linear regression. Differences between the ATS/ERS and new grading systems were tested using two-sided t-test and by multinomial logistic regression using sex, age and height categories as covariates.

Results

Table 1 shows the age distribution of the subjects in the five study groups. As expected, the prevalence rate of airways obstruction is much higher in clinical patients than in the population based samples (figure 2).

There is a strong linear relationship between FEV₁%pred and FEV₁ expressed as a z-score (figure 1) across the FEV₁%pred range of 30-80% (z-score FEV₁ = 5.589 x FEV₁%pred - 5.894, adjusted R² = 0.9997). This allows reliable reconstruction of ATS/ERS severity classification cutoff values by simple replacement of FEV₁%pred with z-scores. After accounting for differences in age there were clinically trivial albeit statistically significant differences in intercept: -0.0048 in centre 2 (JHH) and 0.0024 in centre 3 (TLDRI).

Table 2 shows the z-score equivalencies to the ATS/ERS schema. The z-scores have been rounded for simplification since it is cumbersome to use z-scores to precise values, and given that the category boundaries were arbitrarily defined originally [3], this rounding will have little overall effect. Z-scores of -2, -2.5, -3 and -4 can be used as cutoff values that faithfully reproduce the ATS/ERS severity categories.

FEV₁%pred correlated negatively (R=0.29, p<0.001) with age and sex (higher FEV₁%pred in women). The relationship between FEV₁%pred and z-score for FEV₁ was significantly affected by age (figure 1) and sex (R=0.988) (data not shown). At FEV₁ = 70%pred the z-score for FEV₁ varied between -1.53 and -2.59; at a z-score for FEV₁ = -2 FEV₁%pred varied between 68% and 81% (figure 1). In patients with an FEV₁/FVC ratio below the lower limit of normal the average ATS/ERS grade of 2.79 differed significantly from the 2.69 average grade with the new system (two-sided t-test, p=0.0006).
Grading the severity of airways obstruction

Multinomial logistic regression revealed that allocation to more severe ATS/ERS grades of airways obstruction compared to the new allocation system was significantly related to age, sex and height.

There were 2,097 clinical patients (11.6%) classified as severe or very severe airflow limitation using the GOLD definition of FEV₁/FVC <0.70 and FEV₁ <50% of predicted [4]. The proposed new system classified a similar number as severe or very severe (n=2,079, 11.5%), however in 624 patients (29.8%) the GOLD and proposed criteria lead to a different classification. The GOLD classification system underestimated severity of airways obstruction in 303 of these patients and overestimated in 321. Figure 3 shows the prevalence of severe and very severe airway obstruction using these two classification systems as related to age.

Table 3 indicates the small differences in severity classification between the ATS/ERS grading system and the new z-score based grading system. The overall prevalence of airways obstruction is identical with old and new systems since they both utilise FEV₁/FVC <LLN to define abnormality.

Discussion

The primary objective of this study was to design a statistically robust system for detecting airways obstruction and for grading the extent of impairment. Our analysis reveals that the ATS/ERS recommended system of using FEV₁%pred to grade respiratory impairment is prone to biases caused by age, height and sex differences in underlying distribution of lung function. This can be circumvented by the use of z-scores since they fully account for these biases, and that also introduced by ethnicity factors. The bias due to sex and height, although statistically highly significant, is quite small because the coefficient of variation in males and females is virtually the same [7]. To illustrate this point, a 30 year old 170 cm subject with a z-score for FEV₁ of -2 has a FEV₁%pred of 75.9% and 75.4% for male or female respectively, at age 75 the corresponding values are 65.1% and 64.3%, respectively.

The age bias has created recent discussion and controversy about the criteria used to define airways obstruction [ref 5,14-15,17-20, 24-26]. The ATS and ERS advocate to use the fifth percentile of FEV₁/FVC from a healthy population as the LLN [3], whereas the GOLD group adopted a fixed 0.70 cut-off value for the FEV₁/FVC ratio because of its simplicity and independence of different prediction equations [4]. The GOLD criterion for airway obstruction, by ignoring sex differences and the natural decline of the FEV₁/FVC ratio with age to well below 0.70, leads to more than a 50%
Grading the severity of airways obstruction

overestimation of the prevalence rate of airway obstruction in subjects aged 45 years or older, and
to significant underestimates in younger adults [5]. These findings are corroborated in the present
study (figure 2) and have been implicitly acknowledged by the GOLD group [4]. On that account we
adopted the LLN for FEV₁/(F)V C as the gold standard for diagnosing airways obstruction. It is
important to note that this study is not about diagnosing clinical syndromes such as asthma or COPD
(which rely on clinical assessment in addition to spirometric measurement), but to provide a
statistically valid system for interpretation of spirometry.

There is obviously some overlap in FEV₁/FVC ratio between those with and those without respiratory
disease, and spirometry results cannot be used to categorically separate ill from healthy individuals.
How test results are interpreted is clearly important, and the choice between ERS/ATS and GOLD
guidelines for this requires some justification. One key difference between the two guidelines is that
GOLD identify a higher incidence of airflow obstruction in elderly subjects. One would expect that
such subjects in this ‘marginal zone’ (with FEV₁/FVC <0.70 but >LLN) would develop clinical
symptoms and signs of disease, and follow-up studies have shed light on this clinically relevant issue.
In longitudinal studies in those in this marginal zone no association has been found with increased
risk of all-cause mortality [13,15-17] (except in symptomatic smokers [18]), with development of
respiratory symptoms [18], with accelerated decline in FEV₁ [14,18-20], nor with respiratory care
utilisation or poorer quality of life scores compared with a reference group [18]. In a review of the
literature Hoessein et al. [21] could only find one publication by Mannino et al. [22] allegedly
demonstrating that subjects with an FEV₁/(F)V C ratio <0.70 but >LLN had an increased risk of
premature death and hospitalisation for COPD, and on that basis accepted that GOLD grade 1 does
represent respiratory disease. However, Mannino et al. [22] misrepresented their own findings: the
adjusted hazard ratio for death of 1.1 was not elevated given the confidence interval for this value
was 0.96-1.3. Also the authors conceded that the ‘measure of COPD-related hospitalisations was too
inclusive’ [23]. Thus there is no evidence that this marginal zone represented by GOLD stage 1
indicates respiratory disease. Conversely, individuals with FEV₁/(F)V C <LLN, but not non-smokers
with FEV₁/(F)V C <0.70 but >LLN, have an increased risk of all-cause death [24-25], development of
respiratory symptoms [24-25], accelerated decline in FEV₁ [18] and hospitalisation for COPD [26]. We
therefore believe that there is overwhelming evidence that the LLN, defined as the 5th percentile of
the distribution in a reference population, should be used to diagnose pathological airflow
limitation.
Grading the severity of airways obstruction

Another issue of concern is the use of FEV₁%pred for categorising disease severity. There have been numerous publications, summarised in the GLI-2012 report [7], that show that the underlying scatter in FEV₁ is not proportional to the predicted value, and it varies with age. There is therefore a widening gap between 80% predicted and the LLN for FEV₁, particularly in adults older than 45 years (figure 4), leading to an age-related over-estimate of the severity of airflow limitation. The modified ATS/ERS criteria (table 2) remove the bias in age, sex and height; they lead to identifying 4% of healthy women and men from the NHANES III and HSE studies aged 18 years and older as having mild airways obstruction.

Using the absolute value of FEV₁/FVC to define disease severity is problematic in that more severe airflow obstruction can lead to a reduction in FVC with a paradoxical increase in FEV₁/FVC and poorer prognosis [27]. For this reason severity scaling using FEV₁%pred was recommended [3]. FEV₁/FVC ratios as low as 0.31, 0.36, 0.29, 0.21 and 0.15 occurred in ATS/ERS defined mild, moderate, moderately severe, severe and very severe airway obstruction, respectively. Hence we have focused on FEV₁ z-scores.

Correct classification of obstructive spirometry values in the moderate to severe range is of importance in both clinical and research settings. The most recent GOLD guidelines (2011-2013, [4]) introduced categorization for risk of exacerbation, with one condition leading to patients being categorized as ‘high risk’ if FEV₁ is less than 50 % of predicted. We identified 2097 patients (11.6%) meeting this spirometric criterion. Nearly the same number of patients were identified with severe or very severe airway obstruction according to the new proposed criteria (FEV₁/FVC<LLN and FEV₁ z-score <-3). Although these results appear to be similar, there is actually a 29.8% disagreement in classification. In the younger age groups the GOLD criterion underestimates the real severity of the obstruction in half of these patients, and overestimates it in half of the elderly (figure 3). This may lead to inappropriate management and/or treatment in both situations and introduces a considerable bias in the selection of patients for intervention studies and other research.

Utilising the underlying spread of spirometry data to stratify risk is not new. In 1983 Peto et al. described a 10-fold increase in risk of death from respiratory disease over 20 subsequent years in those with FEV₁ more than 2 standard deviations below average [8]. In developing these new classification criteria we have used z-scores as an essentially identical approach to help stratify severity of disease state. The use of z-scores is already standard procedure when evaluating bone mineral density and growth curves [28-29], and recommended for the interpretation of lung
function test results [6-7]. However, recent analyses reveal that neither FEV₁%pred nor z-scores provide the best indices of choice for studying mortality. Expressing lung function as multiples of the minimum FEV₁ considered to be compatible with life (estimated at 400mL and 500mL in female and male adults respectively) may provide better prediction of mortality [30]. In a 175 cm tall male aged 30 year this minimum FEV₁ of 500 mL represents 11.5 %predicted, z-score -6.51, and at age 75 year 17.0 %predicted, z-score -4.17, illustrating that both %predicted and z-score approaches do not account for this age bias. A z-score of -4.17 in the elderly subject is equivalent to -6.51 in the younger subject from a mortality perspective. Hence disease severity should be categorized using our suggested cutoff values but we should not be tempted to use absolute z-scores to further stratify disease severity.

Spirometric indices of pulmonary function correlate poorly with respiratory symptoms, dyspnoea, exacerbations, hospitalisation, exercise limitation and quality of life. Therefore, any system for grading severity of airflow limitation based solely on spirometric test results will inherently fail to satisfactorily capture the complete clinical picture. Rather than being treated as solely a disease of the lungs, COPD is now considered by some as a multifactorial systemic disease [31]. In view of this the GOLD committee introduced a new classification system that combines spirometry with respiratory symptoms in an attempt to quantify future risk, however this system had not been previously validated. Leivseth et al. [16] concluded that GOLD grade I was not associated with increased mortality, and that spirometric GOLD grades II and higher predicted mortality better than the new GOLD ABCD groups among people with COPD from a Norwegian general population. Also, survival is better in the more severe COPD group C (low lung function but less dyspnoea) than in the less severe group B (much better lung function but more dyspnoea) [32], and the addition of dyspnoea and exacerbations in severity classification did not add prognostic value on long-term COPD outcomes [33]. It therefore seems that more research is required to clinically phenotype the heterogeneous syndrome of COPD and identify biomarkers of disease, with a view to bringing treatment tailored at the individual patient within reach [34], and improving the classification of respiratory impairment and improving risk assessment.

Adopting the proposed adjustments to ATS/ERS recommendations avoids contaminating research groups with healthy subjects and avoids unnecessary medical interventions. In addition, this proposal would enable younger patients with milder disease, who would not have been identified using the GOLD criteria, to be included in future research initiatives. The all-age prediction equations for different ethnic groups issued by the Global Lung Function Initiative [7], and endorsed by six
Grading the severity of airways obstruction

large international respiratory societies, have for the first time provided a means for categorising the lower limits of normal and also the severity of pulmonary impairment which is free of bias due to age, height, sex or ethnic group. Thus a diagnosis of airways obstruction and categorisation of its severity no longer needs to be biased and dependent on where measurements were performed.

Conclusion
The redesigned system for diagnosing airways obstruction and for categorising pulmonary function impairment is based on evidence which underpins its clinical validity and retains previously documented associations between severity of respiratory impairment and outcome variables such as all-cause death. Application with the GLI-2012 prediction equations [7], coupled with standardisation in testing methodologies [11], provides the opportunity for a world-wide standard for performance and interpretation of spirometry which is free of major sources of bias.

Acknowledgement
The authors gratefully acknowledge the constructive comments from the reviewers and Prof. Martin R. Miller which helped to substantially improve the manuscript.
Grading the severity of airways obstruction

References

Grading the severity of airways obstruction

Table 1 – Number of subjects by age group, in the five populations included in this study.

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>18-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>60-70</th>
<th>70-80</th>
<th>80-90</th>
<th>90-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH¹</td>
<td>8</td>
<td>46</td>
<td>91</td>
<td>127</td>
<td>211</td>
<td>334</td>
<td>340</td>
<td>228</td>
<td>8</td>
</tr>
<tr>
<td>JHH²</td>
<td>29</td>
<td>90</td>
<td>119</td>
<td>187</td>
<td>320</td>
<td>517</td>
<td>486</td>
<td>217</td>
<td>2</td>
</tr>
<tr>
<td>TLDRI³</td>
<td>34</td>
<td>290</td>
<td>606</td>
<td>600</td>
<td>1412</td>
<td>1485</td>
<td>1029</td>
<td>205</td>
<td>2</td>
</tr>
<tr>
<td>NHANES⁴</td>
<td>202</td>
<td>1080</td>
<td>925</td>
<td>792</td>
<td>590</td>
<td>779</td>
<td>579</td>
<td>404</td>
<td>19</td>
</tr>
<tr>
<td>HSE⁵</td>
<td>98</td>
<td>586</td>
<td>925</td>
<td>844</td>
<td>904</td>
<td>662</td>
<td>462</td>
<td>110</td>
<td>7</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH¹</td>
<td>12</td>
<td>55</td>
<td>108</td>
<td>189</td>
<td>281</td>
<td>351</td>
<td>265</td>
<td>118</td>
<td>4</td>
</tr>
<tr>
<td>JHH²</td>
<td>26</td>
<td>122</td>
<td>150</td>
<td>253</td>
<td>437</td>
<td>622</td>
<td>479</td>
<td>195</td>
<td>7</td>
</tr>
<tr>
<td>TLDRI³</td>
<td>33</td>
<td>292</td>
<td>466</td>
<td>600</td>
<td>1360</td>
<td>1354</td>
<td>893</td>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td>NHANES⁴</td>
<td>236</td>
<td>1144</td>
<td>1117</td>
<td>844</td>
<td>668</td>
<td>745</td>
<td>657</td>
<td>409</td>
<td>40</td>
</tr>
<tr>
<td>HSE⁵</td>
<td>115</td>
<td>707</td>
<td>1068</td>
<td>1025</td>
<td>1049</td>
<td>719</td>
<td>506</td>
<td>165</td>
<td>9</td>
</tr>
</tbody>
</table>

¹ Austin Hospital, Victoria, Australia; ² John Hunter Hospital, New South Wales, Australia; ³ National Research Institute of TB and Lung Diseases, Warsaw, Poland; ⁴ NHANES III; ⁵ Health Survey for England 1995-1996.
Table 2 – Proposed new grading system for categorisation of airways obstruction. The conventional system is the ATS/ERS suggested system [3] and the new system is based upon defining airways obstruction using the lower limit of normal for FEV₁/(F)VC and using z-scores for FEV₁ to classify severity.

<table>
<thead>
<tr>
<th>Obstruction</th>
<th>Grade</th>
<th>ATS/ERS 2005 FEV₁%pred</th>
<th>Proposed FEV₁ z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>1</td>
<td>> 70%</td>
<td>≥ -2</td>
</tr>
<tr>
<td>Moderate</td>
<td>2</td>
<td>60%-69%</td>
<td>≥ -2.5 but < -2</td>
</tr>
<tr>
<td>Mod. severe</td>
<td>3</td>
<td>50%-59%</td>
<td>≥ -3 but < -2.5</td>
</tr>
<tr>
<td>Severe</td>
<td>4</td>
<td>35%-49%</td>
<td>≥ -4 but < -3</td>
</tr>
<tr>
<td>Very severe</td>
<td>5</td>
<td>< 35%</td>
<td>< -4</td>
</tr>
<tr>
<td>Mean grade</td>
<td></td>
<td>2.79</td>
<td>2.69</td>
</tr>
</tbody>
</table>
Table 3 – Percentage of subjects, separated into clinical and population-based datasets, falling in the respiratory impairment severity categories as defined using the current ATS/ERS guidelines and the proposed new grading system.

<table>
<thead>
<tr>
<th>Clinical Data</th>
<th>ATS/ERS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>New Classification</td>
<td>No obstruction</td>
</tr>
<tr>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Moderately severe</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Very severe</td>
</tr>
<tr>
<td>Total</td>
<td>70.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epidemiological Data</th>
<th>ATS/ERS classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>New Classification</td>
<td>No obstruction</td>
</tr>
<tr>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Moderately severe</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Very severe</td>
</tr>
<tr>
<td>Total</td>
<td>90.3</td>
</tr>
</tbody>
</table>

Figure
Grading the severity of airways obstruction

Figure 1
Grading the severity of airways obstruction

Figure 2
Grading the severity of airways obstruction

Figure 3
Grading the severity of airways obstruction

Figure 4

Predicted FEV₁ (L) vs. Age (yr)