CXCR1 and CXCR2 haplotypes synergistically modulate cystic fibrosis lung disease

Michael S.D. Kormann1*, Andreas Hector1, Veronica Marcos2, Lauren E. Mays1, Matthias Kappler3, Thomas Illig3, Norman Klopp3, Sonja Zeilinger3, Melanie Carevic1, Nikolaus Rieber1, Olaf Eickmeier4, Stefan Zielen4, Amit Gaggar5, Barbara Moepps6, Matthias Griese2 and Dominik Hartl1

1 Children’s Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
2 Emmy-Noether Group, Research Center, University Children’s Hospital, Munich, Germany
3 Institute of Epidemiology, Helmholtz Zentrum, Neuherberg, Germany
4 Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children’s Hospital, Frankfurt, Germany
5 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
6 Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany

* Corresponding author: Michael Kormann, Wilhelmstr. 31, 72074 Tübingen, Germany, michael.kormann@me.com; Tel. +49 7071 2984305

FUNDING/SUPPORT
Supported by the German Research Foundation (DFG, Emmy Noether Programme HA 5274/3-1 to D.H.), the German Society of Pediatric Pneumology (D.H.), PINA e.V. (D.H.) and the Novartis Foundation (D.H.).

RUNNING HEAD
CXCR1/2 modulates CF lung disease
ABSTRACT

Cystic fibrosis (CF) lung disease severity is largely independent of the CF transmembrane conductance regulator (CFTR) genotype, indicating the contribution of genetic modifiers. The chemokine receptors CXCR1 and CXCR2 have been found to play essential roles in the pathogenesis of CF lung disease. Here, we determine whether genetic variation of CXCR1 and CXCR2 influences CF lung disease severity.

Genomic DNA of CF patients in Germany (n=442) was analyzed for common variations in CXCR1 and CXCR2 using a single-nucleotide polymorphism (SNP) tagging approach. Associations of CXCR1 and CXCR2 SNPs and haplotypes with CF lung disease severity, CXCR1 and CXCR2 expression, and neutrophil effector functions were assessed.

Four SNPs in CXCR1 and three in CXCR2 strongly correlated with age-adjusted lung function in CF patients. SNPs comprising haplotypes CXCR1_Ha and CXCR2_Ha were in high linkage disequilibrium and patients heterozygous for the CXCR1-2 haplotype cluster (CXCR1-2_Ha) had lower lung function compared to patients with homozygous wild-type alleles (FEV1 ≤ 70: OR = 7.24; P = 2.30 x 10^-5). CF patients carrying CXCR1-2_Ha showed decreased CXCR1 combined with increased CXCR2 mRNA and protein expression and displayed disturbed antibacterial effector functions.

CXCR1 and CXCR2 genotypes modulate lung function and antibacterial host defense in CF lung disease.

200 words

Key words: cystic fibrosis, polymorphism, chemokines, lung function, G-protein coupled receptor
INTRODUCTION

Chronic lung disease determines the morbidity and mortality of cystic fibrosis (CF) patients [1]. CF lung disease is characterized by a detrimental feed-back loop of bacterial infection and perpetuated inflammation. Although the underlying mechanisms are still poorly understood, previous studies provided evidence that neutrophils represent the key effector cells in this disease condition. CF airway fluids contain millions of activated neutrophils, but these professional phagocytes are inefficient in their antibacterial functionality [2]. Neutrophils are recruited and activated by the chemokine CXCL8 through its two cognate seven transmembrane G-protein coupled receptors (GPCR) CXCR1 (IL-8RA) and CXCR2 (IL-8RB), which are both highly expressed on the neutrophil surface. CXCR1 has been identified as a critical component in the pathogenesis of CF lung disease, as CXCR1 mediates antibacterial host defense in CF airways [2]. High CXCR1 surface expression levels were associated with preserved lung function of CF patients and vice versa.

Disease severity in CF patients is largely independent of the CFTR genotype, indicating the contribution of genetic modifiers [3]. Several genetic modifiers have already been reported in CF patients, including Transforming Growth Factor beta 1 (TGFbeta1), IFRD1, MBL2 and a recently reported locus on chromosomes 11p13 and 20q13.2 [4-8]. Based on the functional importance of CXCR1 and CXCR2 in neutrophilic inflammation, and the documented contribution of genetic modifiers to the severity of CF lung disease, we hypothesized that genetic variants regulate CXCR1 and CXCR2 expression levels in CF patients and may have critical impact on CF lung disease severity.
METHODS

Patients
Informed written consent was obtained from all subjects included in the study, their parents or their legal guardians, and all study methods were approved by the local ethics and by the institutional review board. Only subjects who regularly visited our CF care unit, at least once every 6 months over the course of the last 5 years, were included in our studies. In total, 442 CF patients were included in this study. Details of the CF patient population are given in Supplementary Table 1. The CF group included 224 male and 218 female patients with a mean age of 21.4 ± 12.6 (SD) years. Inclusion criteria were the diagnosis of CF by clinical symptoms and positive sweat tests or disease-inducing mutations, forced expiratory volume in 1 second (FEV$_1$) > 25 % of predicted value and being on stable concomitant therapy at least 2 weeks prior to the study. For 28 patients, no FEV$_1$ data at the time of blood drawing was available and therefore those patients were not included in the FEV$_1$ association analyses. Longitudinal FEV$_1$ values, calculated from a minimum of five consecutive years of CF patient data, were available for 318 CF patients and were utilized to calculate the FEV$_1$ predicted at age of 20 years, as previously reported by Schluchter et al. [9]. In total, we have included 13,256 FEV$_1$ values into our longitudinal analyses. To compare CXCR1/2 SNPs between CF and healthy control populations we included 395 healthy subjects from the KORA population [10]. KORA (Cooperative Health Research in the Region Augsburg) is a regional research platform for population-based surveys and subsequent follow-up studies in the fields of epidemiology, health economics, and health care research [10]. The KORA F4 study is a follow-up of the KORA S4 study, a population-based health survey conducted in the city of Augsburg and two surrounding counties between 1999 and 2001.

Quantitative RT-PCR
Expression levels were quantified in duplicate by real-time quantitative RT-PCR with the use of SYBR green and the iCycler iQ detection system (Biorad, Hercules, CA, USA). Cycle threshold (Ct) values for genes of interest were normalized to β-actin and used to calculate the relative quantity of mRNA expression. For primer sequences see Supplementary Table 2.

CXCR1/CXCR2 genotyping

Polymorphisms with a minor allele frequency > 1% were selected based on the mutation screening performed by Vasilescu et al. [11] and genotyped in above described CF population to investigate the influence of SNPs on CF lung disease. Genomic DNA was extracted from whole blood by a standard salting out method and DNA samples were genotyped using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (Sequenom, San Diego, CA, USA) as described in detail elsewhere [12]. PCR assays and associated extension reactions were designed using the SpectroDESIGNER software (Sequenom). Specific primer sequences are given in Supplementary Table 2.

Neutrophil isolation

Neutrophils from peripheral blood were isolated by Ficoll gradient centrifugation. After isolation, neutrophils were washed in PBS, counted and resuspended in RPMI 1640 or HBSS. The purity of the neutrophil suspensions was > 93%, as determined by May-Grünwald-Giemsa staining and staining Ficoll-isolated neutrophil fractions with CD11b and CD16 antibodies using flow cytometry as recently described [13, 14]. Note: peripheral blood was processed immediately after drawing from a single CF center, thereby excluding transportation or center-to-center variation.

FACS analysis

CXCR1/2 surface staining was performed as previously described [2]. Briefly, freshly obtained neutrophils from peripheral blood underwent Fc blocking and were then incubated
with the respective monoclonal antibodies for 40 min, washed three times and analyzed by flow cytometry (FACSCalibur, Becton-Dickinson, Heidelberg, Germany). Calibrator beads were used to adjust the FACS instrument settings and normalize the data. 10,000 neutrophils were analyzed per sample. CXCR1 and CXCR2 were stained on neutrophils using antibodies from BD Biosciences (San Diego, USA). CXCR1 and CXCR2 antibodies from the same clone were used for all stainings performed, and antibody concentrations were normalized to neutrophil numbers, correcting for differences in neutrophil counts among different CF patients. Isotype controls set to a fixed threshold were subtracted from the respective specific antibody expression and the results were reported as mean fluorescence intensity (MFI). Calculations were performed with Cell Quest analysis software (Becton-Dickinson, Heidelberg, Germany).

Bacterial killing

Bacterial killing was assessed as described previously [2]. A clinical isolate of a mucoid *P. aeruginosa* from a CF patient's sputum was subcultured overnight, grown to stationary phase, washed and pre-opsonized by incubation for 60 min at 37°C in 20% pooled fresh C5a-depleted human serum. After washing two times in PBS, the opsonized *P. aeruginosa* bacteria were resuspended in 1 ml of a mixture of HBSS supplemented with 0.1% gelatine (HBSS-gel) and tryptic soy broth (Difco Laboratories, Detroit, MI, USA). Neutrophils were then incubated at 37°C with bacteria (2x10⁷ bacteria/ml) at a ratio of 5 bacteria per neutrophil. Where indicated, CXCL8 (100 nM) was added to the assay to stimulate CXCR1 function. At the times indicated aliquots of each mixture were removed and *P. aeruginosa* colonies were counted by serial dilution in distilled water and quantitative spread plating. Data are expressed as CFU/ml.

Respiratory burst
Neutrophils were incubated at equal numbers (2x10^6/ml) with dihydrorhodamine-123 (DHR) stain for 20 min at 37°C. Formyl-methionyl-leucyl-phenylalanine (fMLP, 1 M) was then added to the cells for 30 min at 37°C. Where indicated, CXCL8 (100 nM) was added to the assay to stimulate CXCR1 function. The respiratory burst of the neutrophils was analyzed by measuring the rhodamine-123 fluorescence intensity using flow cytometry.

Statistical analysis

Derived genotype frequencies were compared with the expected allelic population equilibrium based on the Hardy-Weinberg equilibrium test (Pearson χ^2) to control for technical genotyping errors. Associations between SNPs and qualitative outcomes were first tested by using Pearson χ^2 [15] and Fisher's exact test, using a dominant model. Comparisons between quantitative outcomes in two patient groups were performed with the two-sided t test, while comparisons among more than two groups for quantitative outcomes were performed with analysis of variance. To test associations between SNPs and outcomes in complex models, logistic regression was used for qualitative outcomes, and linear regression for quantitative outcomes. Odds Ratios and 95%-confidence intervals are reported for dichotomous outcomes while the non-standardized regression coefficient B and the Betas are given for quantitative outcomes. Multivariate analysis was used to adjust for potentially confounding factors (age, sex, CFTR genotype, *P. aeruginosa*). Haplotype frequencies were estimated using the expectation-maximization algorithm [16]. To specify the effects of individual haplotypes we performed haplotype trend regressions in which the estimated probabilities of the haplotypes are modeled in a logistic regression as independent variables [17]. To account for multiple comparisons a Bonferroni adjustment was performed. A P value of <0.002 (0.05 / 24 tests) was considered to be statistically significant. Where indicated data are shown as means ± standard error of the mean (SEM). Comparisons among all groups were
performed with ANOVA and comparisons between two patient groups were performed with the two-sided t test. Graphs were plotted with Prism 4.0 (Graph Pad Software, San Diego, CA, USA). Statistical analyses were performed with STATA version 8.2 for Windows (STATA Corporation, College Station, TX, USA) and PASW version 18.0 for Mac (SPSS Inc., Chicago, IL, USA).
RESULTS

Expression levels of CXCR1 and CXCR2 observed in peripheral blood neutrophils isolated from CF patients demonstrated two distinct expression populations at both the mRNA and protein level (Figure 1A). Based on a high variability in CXCR1 and CXCR2 mRNA and protein expression (Figure 1A and data not shown), we set out to assess whether genetic hot-spots within the CXCR1 and CXCR2 genes [11] associate with CXCR1/2 expression levels and CF lung disease severity in a well-characterized CF patient cohort (Table 1). One hundred ninety-one CF patients were ∆F508 homozygous, 129 were ∆F508 heterozygous carriers of the CFTR gene, and 122 had CFTR mutations other than ∆F508. Two hundred forty-six patients were positive for *P. aeruginosa* microbiology (bacteria isolated in at least 2 consecutive sputum samples with a minimum of a six-month interval). Twenty-one single-nucleotide polymorphisms (SNPs) tagging the *CXCRI* and *CXCR2* loci were genotyped (Table 2). All polymorphisms had genotype distributions consistent with Hardy-Weinberg equilibrium (*P* > 0.1) and call rates ranged from 89.1 to 99.1%. The minor allele frequencies of *CXCRI/CXCR2* SNPs showed no significant difference in the CF population compared to an age-matched healthy control population (Supplementary Table 3). We found that four polymorphisms in *CXCRI* and three polymorphisms in *CXCR2* strongly correlated with age-adjusted lung function [9] in CF patients (Table 1). Patients with either haplotype *CXCRI* _Ha_ or haplotype *CXCR2* _Ha_ (heterozygous for the SNP cluster) displayed significantly lower age-adjusted longitudinal lung function (forced expiratory volume in 1 second, FEV₁) than CF patients homozygous for *CXCRI* _HA_ (FEV₁ ≤ 70: OR = 4.90) or *CXCR2* _HA_ (FEV₁ ≤ 70: OR = 3.80) (Table 2). Intriguingly, SNPs comprising both haplotypes *CXCRI* _Ha_ and *CXCR2* _Ha_ were in a remarkably high extent of linkage disequilibrium (Figure 1B). Consequently, an even higher risk for the development of lower lung function was found for the combined haplotype *CXCRI-2* _Ha_ when compared to homozygous carriers of *CXCRI-2* _HA_ (FEV₁ ≤ 70: OR = 7.24) (Table 2). CF patients carrying the *CXCRI-2* _Ha_ haplotype
yielded significantly lower CXCR1 mRNA and protein levels combined with higher CXCR2 mRNA and protein levels in peripheral blood neutrophils when compared to \textit{CXCR}1-2_HA CF individuals (Figure 1C). The genetic effect of the \textit{CXCR}1-2_Ha haplotype on CXCR1 and CXCR2 mRNA or protein expression was not dependent on circulating serum levels of CXCR1/2 ligands, neutrophil apoptosis or activation status of neutrophils (data not shown).

To determine whether these genetic variants affected neutrophil effector functions, we analyzed CXCR1- and CXCR2-mediated antibacterial neutrophil functions in indexed CF patients carrying the \textit{CXCR}1-2_Ha haplotype, in particular CXCR1-mediated respiratory burst and intracellular killing of \textit{Pseudomonas aeruginosa (P. aeruginosa)} [2]. Indeed, neutrophils from patients carrying \textit{CXCR}1-2_Ha featured decreased CXCR1-mediated antibacterial functionality (Figure 2).
DISCUSSION

Our results provide strong genetic and functional evidence for a clinically-relevant role of $CXCR1$ and $CXCR2$ haplotypes in modifying CF lung disease. Previous studies identified $CXCR1$ as a key component in the maintenance and perpetuation of inflammation in CF lung disease [2]: $CXCR1$ on neutrophils mediates bacterial killing, but is damaged in CF airways proteolytically, thereby favoring infections and sustaining auto-inflammation. These studies demonstrated that high $CXCR1$ protein expression levels had a protective effect on lung function in CF patients. Inspired by these findings, we systematically analyzed associations of $CXCR1$/\textit{CXCR2} SNPs and haplotypes with CF lung disease severity by means of a candidate gene association study. These genetic investigations identified a $CXCR1$/\textit{CXCR2} haplotype cluster that had a significant impact on lung function and neutrophil functionality in CF patients.

Additional genetic modifiers for CF lung disease, including $TGF\beta1$, $IFRD1$, and $MBL2$ [4-7] have been previously described. Initially, the role of $TGF\beta1$ as a CF modulator was suggested from studies with a case-control setting [6]. However, further studies have shown that designation of the risk allele for $TGF\beta1$ varies between studies, most likely due to transmission ratio distortion and maternal confounder effects, and thus needs to be interpreted with caution [18]. A subsequent genome-wide scan was only able to identify $IFRD1$ as a CF modifier. Interestingly, $IFRD1$ polymorphisms were also significantly associated with variation in neutrophil effector function [7]. Initially, studies of $MBL2$ as CF disease modifier gave inconsistent results [6, 19, 20]. However, a recent meta-analysis, taking the majority of available data sets into account, supports $MBL2$ as major modifier of CF lung disease [21]. In a recent whole genome-wide approach, two significant loci on chromosomes 11p13 ($EHF-APIP$ region) and 20q13.2 were identified that harbor genes of biologic relevance for CF [8]. Due to the distinct functionalities of $CXCR1$, $CXCR2$, $IFRD1$ and $TGF\beta1$ [22, 23] and as the candidate genes on chromosomes 11p13 and 20q13.2 remain
yet unidentified, the comparison of these potential CF lung disease modifiers at genetic, expression and functional levels was out of scope of this study. However, a mutual genetic influence on association results is unlikely given their different chromosomal locations (CXCR1/2 Chr 2, IFRD1 Chr 7, TGFbeta1 Chr 19). Future studies are required to define their inter-relationship and contribution to CF lung disease.

Beyond the statistical association of the CXCR1/CXCR2 haplotype cluster on longitudinal pulmonary function in our study, we found that CF individuals carrying the haplotype cluster showed disturbed antibacterial effector functionalities, in particular, CXCL8-induced respiratory burst-mediated generation of reactive oxygen species as well as CXCL8-induced killing of P. aeruginosa. These studies suggest that the described CXCR1/CXCR2 haplotype cluster may modulate pulmonary outcome in CF patients through a dysregulation of neutrophilic innate effector functions.

The main limitation of this study is the number of CF patients included. Accordingly, as this study is the first report of a genetic association, these results have to be confirmed by independent investigators in other CF populations. Comparing the distribution of FEV1 values across allelic groups confirmed the strong association of four polymorphisms in CXCR1 and three polymorphisms in CXCR2 with age-adjusted lung function (Table 1). Interestingly, we observed that the minor allele frequencies (MAFs) of the majority of CXCR2 SNPs were higher compared to CXCR1 SNPs (Table 1). Similar MAF distributions of CXCR1 and CXCR2 SNPs have been demonstrated previously in a control cohort by Vasilescu et al. [11]. Neither the frequency of ΔF508 homozygous, ΔF508 heterozygous, or non-ΔF508 CF patients differed significantly between HA and Ha carriers. Linear regression analysis showed that CFTR genotypes had no confounding effects on the CXCR1/2 haplotype observed.

Taken together, we have identified a CXCR1/2 haplotype cluster that is associated with lung function in CF patients, and synergistically affects mRNA and protein expression, thereby modulating neutrophil effector functions. As both CXCR1 and CXCR2 are G protein
coupled receptors, our results may provide new pharmacological approaches for the treatment of CF lung disease.

AUTHOR CONTRIBUTIONS

Kormann, Hector and Hartl designed the experiments. Kormann, Hector, Illig, Klopp, Zeilinger, Marcos, Kappler, Mays, Carevic, Moepps, Rieber, Eickmeier, Zielen, Gaggar and Griese generated reagents and performed the experiments. Kormann and Hartl wrote and edited the manuscript.
FIGURE LEGENDS

Figure 1. CXCR1/CXCR2 expression profiles and CXCR1/CXCR2 haplotypes in CF patients

A. CXCR1 and CXCR2 mRNA expression levels were quantified in peripheral blood neutrophils from CF patients by real-time RT-PCR (left panel). CXCR1 and CXCR2 protein surface expression levels on CF neutrophils were quantified by FACS (right panel). MFI: mean fluorescence intensity.

B. Location and linkage disequilibrium (R² and D’) of CXCR1 and CXCR2 polymorphisms genotyped in the CF population. In this plot, each square represents a pairwise comparison between two SNPs and the respective R² is given within each square. Darker square colors of red indicate higher values of D’, up to a maximum of 1. SNPs are numbered sequentially, 5’ to 3’, and their relative location is indicated along the top.

C. CXCR1 and CXCR2 mRNA (upper panel) and protein surface (lower panel) expression levels in CF patients stratified for HA or Ha haplotype. MFI: mean fluorescence intensity.

*P<0.01
Figure 2. CXCR1/CXCR2 haplotypes modulate antibacterial neutrophil functions in CF patients

(A,B) Neutrophils were isolated from CF patients with the HA (n=3) or Ha (n=3) haplotype and CXCR1- and CXCR2-mediated neutrophil effector functions were analyzed as described previously [2]. *P<0.01

A. CXCR1 mediated respiratory burst measured by FACS (DHR: dihydrorhodamine). After staining with dihydrorhodamine-1,2,3 (DHR) for 20 min at 37°C, cells were stimulated with fMLP (1 M) for an additional 30 min in the presence of CXCL8 (100 nM), and the respiratory burst was analyzed by flow cytometry. Results are depicted as the mean fluorescence intensity (MFI) of the total neutrophil population.

B. CXCR1 mediated killing of *P. aeruginosa*. Isolated neutrophils were incubated with preopsonized *P. aeruginosa* bacteria at a ratio of 5 bacteria per cell for 150 min in the presence of CXCL8 (100 nM).
TABLES

Table 1. CXCR1 and CXCR2 tagging SNPs and their association with lung function.

CXCR1

<table>
<thead>
<tr>
<th>SNP</th>
<th>Position</th>
<th>Location/Function</th>
<th>Alleles</th>
<th>MAF FEV$_1$%@20yrs≤70</th>
<th>MAF FEV$_1$%@20yrs>70</th>
<th>OR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2671222</td>
<td>-2668</td>
<td>Promoter</td>
<td>G/A</td>
<td>0.046</td>
<td>0.065</td>
<td>0.66</td>
<td>0.411</td>
</tr>
<tr>
<td>rs17838611</td>
<td>-2423</td>
<td>Promoter</td>
<td>G/A</td>
<td>0.027</td>
<td>0.007</td>
<td>3.92</td>
<td>0.028</td>
</tr>
<tr>
<td>rs16858841</td>
<td>-2329</td>
<td>Promoter</td>
<td>C/T</td>
<td>0.077</td>
<td>0.015</td>
<td>6.02</td>
<td>1.58 x 10^{-5}</td>
</tr>
<tr>
<td>rs3138060</td>
<td>-1566</td>
<td>Intron</td>
<td>C/G</td>
<td>0.044</td>
<td>0.066</td>
<td>0.68</td>
<td>0.167</td>
</tr>
<tr>
<td>rs16858816</td>
<td>-143</td>
<td>Intron</td>
<td>C/T</td>
<td>0.066</td>
<td>0.016</td>
<td>4.61</td>
<td>2.31 x 10^{-4}</td>
</tr>
<tr>
<td>rs16858811</td>
<td>92</td>
<td>Met/Arg</td>
<td>G/T</td>
<td>0.066</td>
<td>0.014</td>
<td>5.29</td>
<td>1.41 x 10^{-4}</td>
</tr>
<tr>
<td>rs16858808</td>
<td>1003</td>
<td>Arg/Cys</td>
<td>C/T</td>
<td>0.052</td>
<td>0.016</td>
<td>3.55</td>
<td>0.003</td>
</tr>
</tbody>
</table>

CXCR2

<table>
<thead>
<tr>
<th>SNP</th>
<th>Position</th>
<th>Location/Function</th>
<th>Alleles</th>
<th>MAF FEV$_1$%@20yrs≤70</th>
<th>MAF FEV$_1$%@20yrs>70</th>
<th>OR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3890158</td>
<td>-9203</td>
<td>Promoter</td>
<td>A/G</td>
<td>0.468</td>
<td>0.466</td>
<td>1.01</td>
<td>0.948</td>
</tr>
<tr>
<td>rs45493792</td>
<td>-9191</td>
<td>Promoter</td>
<td>-/T</td>
<td>0.364</td>
<td>0.370</td>
<td>0.94</td>
<td>0.791</td>
</tr>
<tr>
<td>rs3890157</td>
<td>-9185</td>
<td>Promoter</td>
<td>T/G</td>
<td>0.077</td>
<td>0.025</td>
<td>3.47</td>
<td>4.73 x 10^{-4}</td>
</tr>
<tr>
<td>rs35231134</td>
<td>-9179</td>
<td>Promoter</td>
<td>-/T</td>
<td>0.510</td>
<td>0.498</td>
<td>1.05</td>
<td>0.822</td>
</tr>
<tr>
<td>rs4674258</td>
<td>-8909</td>
<td>Promoter</td>
<td>C/T</td>
<td>0.343</td>
<td>0.370</td>
<td>0.77</td>
<td>0.247</td>
</tr>
<tr>
<td>rs4674259</td>
<td>-8490</td>
<td>5'-UTR</td>
<td>A/G</td>
<td>0.382</td>
<td>0.354</td>
<td>1.34</td>
<td>0.741</td>
</tr>
<tr>
<td>rs17844697</td>
<td>-270</td>
<td>Intron</td>
<td>G/A</td>
<td>0.423</td>
<td>0.445</td>
<td>0.99</td>
<td>0.953</td>
</tr>
<tr>
<td>rs11574750</td>
<td>768</td>
<td>Val/Val</td>
<td>C/T</td>
<td>0.077</td>
<td>0.023</td>
<td>3.75</td>
<td>2.77 x 10^{-4}</td>
</tr>
<tr>
<td>rs2230054</td>
<td>786</td>
<td>Leu/Leu</td>
<td>C/T</td>
<td>0.323</td>
<td>0.338</td>
<td>0.88</td>
<td>0.572</td>
</tr>
<tr>
<td>rs45606837</td>
<td>936</td>
<td>Leu/Leu</td>
<td>C/T</td>
<td>0.023</td>
<td>0.009</td>
<td>2.67</td>
<td>0.098</td>
</tr>
<tr>
<td>rs1126579</td>
<td>1209</td>
<td>3'-UTR</td>
<td>C/T</td>
<td>0.383</td>
<td>0.354</td>
<td>1.34</td>
<td>0.212</td>
</tr>
<tr>
<td>rs13306441</td>
<td>1420</td>
<td>3'-UTR</td>
<td>A/G</td>
<td>0.070</td>
<td>0.017</td>
<td>4.48</td>
<td>1.64 x 10^{-4}</td>
</tr>
<tr>
<td>rs17844765</td>
<td>1437</td>
<td>3'-UTR</td>
<td>C/T</td>
<td>0.007</td>
<td>0.006</td>
<td>1.20</td>
<td>0.844</td>
</tr>
<tr>
<td>rs1126580</td>
<td>1441</td>
<td>3'-UTR</td>
<td>C/T</td>
<td>0.433</td>
<td>0.447</td>
<td>0.99</td>
<td>0.955</td>
</tr>
</tbody>
</table>

MAF, minor allele frequency; FEV$_1$%@20yrs, age-adjusted (20 years) longitudinal forced expiratory volume (FEV$_1$) [9]; OR, odds ratio (in bold if significant after Bonferroni correction).
Table 2. \textit{CXCR1} and \textit{CXCR2} risk allele haplotype combinations and their association with lung function.

<table>
<thead>
<tr>
<th>Polymorphism position</th>
<th>MAF FEV$_1$%@20yrs</th>
<th>OR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{CXCR1}</td>
<td>\textit{CXCR2}</td>
<td>≤70</td>
</tr>
<tr>
<td>-2329</td>
<td>-143</td>
<td>92</td>
<td>1003</td>
</tr>
<tr>
<td>\textit{CXCR1} Ha</td>
<td>T</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>\textit{CXCR2} Ha</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>\textit{CXCR1-2} Ha</td>
<td>T</td>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

MAF, minor allele frequency; FEV$_1$\%@20yrs, age-adjusted (20 years) longitudinal forced expiratory volume (FEV$_1$) [9]; OR, odds ratio; \textit{CXCR1} Ha and \textit{CXCR2} Ha combine all risk alleles of \textit{CXCR1} or \textit{CXCR2}, respectively; \textit{CXCR1-2} Ha combines risk alleles of both \textit{CXCR1} and \textit{CXCR2}.

18
REFERENCES

