Hypoxia inducible factor-1 α in human emphysema lung tissue

Masanori Yasuo, MD*#, Shiro Mizuno, MD*#, Donatas Kraskauskas*, Harm J. Bogaard, MD*, Ramesh Natarajan, MD*, Carlyne D. Cool, MD†, Martin Zamora, MD‡, and Norbert F. Voelkel, MD*

*Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Obstructive Lung Diseases,
Virginia Commonwealth University, Richmond, VA, 23298

†Department of Pathology, University of Colorado Health Science Center, LTRC repository, Aurora, Colorado

‡Pulmonary and Critical Care Medicine Division, University of Colorado Health Science Center, Aurora, Colorado

Both of these authors contributed equally to this work.

Running title: HIF-1 α in human emphysema

Corresponding author: Norbert F. Voelkel M.D.

Virginia Commonwealth University, Molecular Medicine Research Building, Broad Street Richmond, VA

Telephone: 804-628-9614

Fax: 804-628-0325

nvoelkel@mcvh-vcu.edu

Copyright 2010 by the European Respiratory Society.
Grants; Supported by the NIH Lung Division LTRC grant support mechanism (Grant number; N01-HR-46160-3, contact name; Norbert F. Voelkel)

Supported by the Victoria Johnson Center for obstructive Lung Disease Research.

Word count; 3351
Abstract

The pathobiology of chronic obstructive pulmonary disease (COPD) is incompletely understood. The aim of this study is to assess the expression of hypoxia inducible factor (HIF)-1α in lung tissue from patients with COPD/emphysema.

Lung tissue samples from 26 patients were included in this study. Seven samples were from patients with normal lung function, the remainder of the samples was from patients with moderate COPD (n=6; stage I and II, GOLD classification), and severe COPD (n=13; stage III and IV).

We analyzed mRNA and protein expression in the lung tissue samples and found that: (1) HIF-1α and histone deacetylase 2 (HDAC2) proteins were significantly decreased and were correlated. (2) HIF-1α and vascular endothelial growth factor (VEGF) proteins and FEV1 % predicted were correlated in all patients. (3) The changes in VEGF and HIF-1α protein levels in all patients were not age-related and not related to the pack year smoking history. (4) The reduced HIF-1α protein expression was seen in lung endothelial cells and alveolar septal cells by immunohistochemistry.

In conclusion, reduced expression of HIF-1α protein in severe COPD is consistent with the concept of a lung structure maintenance program which is impaired on a molecular level.

Word count; 195
Key words: chronic obstructive pulmonary disease, emphysema, hypoxia inducible factor-1 alpha, vascular endothelial growth factor
Introduction

Chronic obstructive pulmonary disease (COPD) is a major and increasingly recognized global health problem and emphysematous lung tissue destruction accounts for a large component of the pathogenesis and morbidity of patients with this disease [1, 2]. Although chronic inflammation has been identified as an important finding and documented by histological investigation of lung tissue [3-5], the cellular and molecular details of lung tissue destruction are incompletely understood [6, 7]. Inflammatory mediators, proteases and oxidants are released by activated cells and are thought to attack the alveolar septal structure and jeopardize the adult lung structure maintenance program [7, 8]. Vascular endothelial growth factor (VEGF) has been suggested as an integral part of such a lung structure maintenance program [9], and the expression of the VEGF and VEGF receptor 2 (VEGFR2 (KDR)) proteins has been shown to be decreased in human lung tissue and airway samples from patients with severe COPD/ emphysema [10, 11]. This decrease of lung tissue VEGF gene and protein expression is unexplained, in particular in view of the presence of inflammation and considering that patients with severe COPD are frequently hypoxic. We undertook the present study in order to investigate a mechanism which could explain the decreased VEGF protein expression in emphysematous lungs. Although the transcription factor, hypoxia inducible factor-1 alpha (HIF-1α) is not the only factor involved in the control of VEGF gene transcription [12, 13] by binding to the hypoxia response element (HRE) [14] of
the VEGF gene promoter, HIF-1α induced VEGF expression is certainly considered a major and important mechanism of VEGF transcriptional control [15]. Recently it has been recognized that hypoxia and inflammation interact on the level of HIF-1α dependent target gene expression [16], but also that there are non-hypoxic pathways of HIF-1α induction [14, 17]. Because inflammation and HIF-1α overlap it is surprising that the expression of the lung structure maintenance factor VEGF is dramatically reduced in the lung of patients with endstage COPD [10, 11, 18].

Given the potential importance of VEGF in the maintenance of lung vascular endothelial health [19], and the finding of decreased VEGF gene expression in human emphysema [10] and animal models of emphysema [20, 21], we find it necessary to investigate the mechanisms of suppressed lung tissue VEGF gene transcription and propose impaired HIF-1α protein stability as a mechanism. In support of this hypothesis is the finding of increased p53 expression in the lungs from emphysema patients [22] as p53 regulates HIF-1α expression [23, 24]. Because the transcription factor HIF-1α controls the expression of a large number of genes, a loss of HIF-1α in emphysematous lungs would have far reaching consequences -beyond VEGF gene expression- for cell growth and cell metabolism [25].

Here we investigated the expression of VEGF, HIF-1α, histone deacetylase 2 (HDAC2) and p53 proteins in samples from patients with COPD/emphysema and report a decreased expression of HIF-1α protein, which may relate to the severity of emphysema.
Materials and Methods

Patients

We obtained lungs from 26 patients who were undergoing single or bilateral lung explantation (10 patients), lung volume reduction surgery (3 patients), lobectomy or wedge resection (11 patients), and biopsy (1 patient) for the diagnosis of lung cancer. Table 1 shows the summarized patient characteristics and online supplementary Table 1 shows whole patients’ information. Samples were obtained from the NIH Lung Tissue Repository and from the explanted lung tissue bank of the UCHSC Lung Transplant Program (MZ). The diagnosis of emphysema was made by the LTRC (Lung Tissue Repository Consortium) pathologist (CDC) based on histological examination. The diagnosis was also supported by chest CT scan data. Patients #1 to 7 are non-smokers, although very mild centrilobular emphysema was detected by histopathological diagnosis (except patient #1 and 7), and had no evidence of COPD. The cause or caused of the mild emphysematous changes are unknown. Patient #8 to 26 are smokers, patient #10 is a current smoker and the other patients except patient #17 (smoking history was unavailable) are former smokers. We divided the patients into three groups: no COPD (patients #1 to 7), mild COPD (patients #8 to 13), and severe COPD (patients #14 to 26) according to the Global initiative for chronic Obstructive Lung Disease (GOLD) classification (Table 1 and online supplemental Table 2). The patients having severe COPD were younger than the patients with mild COPD (59.5±1.6 vs. 69.8±3.6,
P<0.05). None of the patients’ lungs showed histological findings consistent with severe pulmonary hypertension. All lung tissue samples were maintained at -80 °C until processing.

All of the patients gave informed consent to take part in the study and have their tissue banked in the LTRC repository. The study was approved by the Committee on Human Research both of our institutions.

Because we wished to validate the first data set obtained from the analysis of tissue from patients #1-6 and #8-19 by subsequently analyzing additional patient samples (patients #7, and #20-26) we display the Western blot protein expression data separately- the first cohort data in Figure 1 and online supplemental Figure 1 and 2, the second cohort data also indicated in online supplemental Figure 1 and 2.

Chemicals

Chemicals and materials were obtained from the following sources: the RNA later® - ice kit frozen tissue transition solution was from Ambion Inc. (Austin, TX); the high capacity cDNA Reverse Transcription kit was from Applied Biosystems Inc. (Foster City, CA); the ECL system (Western Lightening® and Western Lightening® plus-ECL) was from PerkinElmer (Waltham, MA); the cDNA reverse transcription kit and the Power SYBR® Green PCR master mix was from Applied Biosystems (Foster City, CA); NE-PER® Nuclear and Cytoplasmic Extraction Reagents was from Thermo Scientific (Rockford, IL); 4–12%
Bis-Tris Nupage gels, and MES-SDS running buffer were from Invitrogen (Carlsbad, CA, USA); the polyvinylidene difluoride (PVDF) membranes was from Bio-Rad Laboratories (Richmond, CA); the protease inhibitor cocktail tablets was from Roche Applied Science (Indianapolis, IN); positive control of HIF-1α protein, rabbit anti-VEGF polyclonal antibody, mouse anti-Akt monoclonal antibody, rabbit anti-phospho Akt (pAkt) polyclonal antibody, mouse anti-HIF-1α monoclonal antibody, rabbit anti-HDAC2 polyclonal antibody, goat anti-Lamin B polyclonal antibody, rabbit anti-FIH-1 polyclonal antibody, mouse anti-p53 monoclonal antibody and horseradish peroxidase-conjugated goat anti-mouse and rabbit, and donkey anti-goat IgG were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA); mouse anti-Hsp90 monoclonal antibody was from Stressgen bioreagents (Ann Arbor, MI). Surveyor™ IC human/mouse total HIF-1 α immunoassay was from R&D systems, Inc (McKinley Place, MN). Vectastain® Elite ABC-Peroxidase Kits Universal were from Vector Laboratories (Burlingame, CA). Liquid diaminobenzidine (DAB) substrate chromogen system was from Dako North America Inc. (Carpinteria, CA). All other chemicals were purchased from Sigma (St. Louis, MO).

Real-Time Reverse Transcriptase-Polymerase Chain Reaction Analysis of lung tissue

The sequence of the forward and reverse primers is shown in online supplemental Table 2. Additional details of the methods are provided in the online data supplement.
Western blot analysis of lung tissue

To extract nuclear and cytoplasmic proteins, stored fresh frozen lung tissue samples from patients were properly manipulated on dried ice. Additional details of the methods are provided in the online data supplement.

Total HIF-1 α protein quantification of lung tissue

Total HIF-1 α protein quantification by enzyme-linked immunosorbent assay (ELISA) method was using the Surveyor™ IC human/mouse total HIF-1 α immunoassay kit and the manufacturer’s instruction with some modifications.

Immunohistochemistry of HIF-1 α

Formalin-fixed resected lung tissue from patients with or without COPD were examined. Five-micron random lung tissue sections were mounted onto Superfrost slides. Then immunohistochemistry of HIF-1 α was performed as previously described [26]. Additional details of the methods are provided in the online data supplement.
Statistical analysis

All data are expressed as means ± standard error (S.E.M.). Clinical data were evaluated for significance by an ANOVA and the Scheffe test, and differences in other data were analyzed by the Kruskall-Wallis test. Correlations were analyzed by the Pearson correlation coefficient. Significance was determined at $P<0.05$ (two-tailed test).
Results

Patient characteristics

Summarized patient characteristics are shown in Table 1. All of the patient data including the CT scan data and the pathological diagnosis with the exception of patients #7 and #20-26 were extracted from the LTRC data base (online supplemental Table 1). Some, albeit-mild degree of emphysema was detected histologically in all of the lung tissue samples from patients with normal spirometric values- with the exception of patient #1 and 7. Ten of the 26 tissue samples were tumor-free tissues from patients with the diagnosis of lung cancer and 3 patients had a history of oral steroid use. All of the patients had centrilobular emphysema; all of the patients without a clinical diagnosis of COPD (providing tissue samples #1-7) were non-smokers. The pack year cigarette smoking history of the COPD patients varied between 10 and 120; for one of the COPD patients the smoking history was unknown. The degree of lung function impairment ranged from mild to very severe. The patients are listed in online supplemental Table 1 in the order of their % predicted FEV1.

Lung tissue expression of cytoplasmic and nuclear proteins

Western blot protein analysis was performed for VEGF and pAkt. The protein expression was referenced to β actin and Akt, respectively. The data confirm previous findings of decreased VEGF protein expression in random lung tissue samples from patients with severe
COPD/emphysema [10] and show in addition reduction in lung tissue pAkt protein expression (Figure 1A, B, and online supplemental Figure 1A) which has not been previously reported.

In the same lung tissue samples, nuclear proteins were assessed and referenced to the housekeeping protein lamin B (Figure 1C, D and online supplemental Figure 1B). Individual data and representative protein expression by Western blot for VEGF, pAkt, HIF-1α and HDAC2 in the categories ‘no COPD’, ‘mild COPD’, and ‘severe COPD’ are shown in Figure 1. As can be seen, the expression of the HDAC2 protein was reduced in most of the tissue samples from patients with severe COPD/emphysema confirming earlier reports [27] (Figure 1C and online supplemental Figure 1B). Of interest, HIF-1α protein also showed a reduction in expression in the samples from some patients with less severe COPD/emphysema (Figure 1D and online supplemental Figure 1B). To confirm that indeed HIF-1α protein expression was reduced in the lung tissues, we used an ELISA and found that HIF-1α protein expression by ELISA was significantly decreased (data not shown) in the lungs from patients with severe COPD (P<0.005; vs. no COPD). Likewise, again in the same tissue samples, there was a significant increase in the expression of p53 in lungs from COPD/emphysema patients (P<0.05) by densitometric analysis when severe COPD patient samples were compared with samples from patients that had normal lung function. There was no difference in the tissue expression of the prolyl hydroxylase-2 (PHD-2) protein and FIH-1 (factor inhibition of HIF-1α -1) and also no
statistically significant difference in the expression of the chaperone involved in HIF-1α expression control, heatshock protein 90 (Hsp90). (online supplemental Figure 2).

HIF-1α protein is correlated with HDAC2 protein

We found that HIF-1α protein expression related to HDAC2 protein expression (R²=0.34, P<0.01, Figure 2A) and HIF-1α protein expression was also strongly correlated with the target genes VEGF (R²=0.59, P<0.001, Figure 2B) and GLUT1 (R²=0.40, P<0.001, Figure 2C).

HIF-1α protein expression in lung tissue and severity of COPD/emphysema

All individual FEV 1 % predicted data which we could obtain (n=25) were shown in Figure 3A. When all of the tissue samples from patients with or without COPD were considered, a significant correlation between HIF-1α and FEV1 was found (R²=0.32, P<0.005) (Figure 3B). When the lung tissue HIF-1α protein expression was plotted against pack years of cigarettes smoked, we did not find a correlation between those two variables (online supplemental Figure 3). Since there was a significant age difference between patients with mild and severe COPD (Table 1), we analyzed the relationship between age and VEGF and HIF-1α protein levels. There was no age-dependent relationship (R²=0.018, P=0.51, R²=0.0008, P=0.89, respectively).
Figure 4 shows the immunohistological localization of HIF-1α protein in one tissue section from a normal lung (Fig4A, B) and one sample from a lung obtained from a patient with severe COPD (Fig4C, D). The lung from the severe COPD patient demonstrates less expression of pulmonary artery endothelial cell HIF-1α protein expression. The HIF-1α expression by alveolar septal cells is also reduced.

Gene expression changes in COPD/emphysema lung tissue

When we related the tissue expression of HIF-1α mRNA/β actin mRNA to the corresponding HIF-1α protein expression, we found that a correlation between lung tissue HIF-1α mRNA and protein expression ($R^2=0.30$, $P<0.01$) (Figure 5A), indicating that in COPD/emphysema lung tissue both HIF-1α transcription and protein stability and degradation had been affected. Surprisingly, a significant positive correlation between HDAC2 protein and HIF-1α gene expression was also found ($R^2=0.31$, $P<0.01$) (Figure 5B).

Discussion

Modern views of the pathobiology of emphysema include inflammatory and immune mechanisms [28, 29] and the concept of a breakdown of a molecular lung structure maintenance program [7, 30]. Here we describe for the first time the decreased expression in
lung tissues from patients with COPD/emphysema of a nuclear protein which is critically involved in the control of gene expression: HIF-1α. We also confirm the previously reported decreased expression of another nuclear protein: HDAC2 [27]. The reduced expression of HIF-1α in emphysematous lung tissues is a surprising finding in view of the known induction/stabilization of this protein by hypoxia and inflammatory mechanisms [31]. HIF-1α expression is increased in hypoxemic and inflamed tissues, and in many tumor tissues HIF-1α is known to promote tumor angiogenesis [32]. In contrast, no diseases have so far been described that are characterized by a decrease of tissue levels of the HIF-1α protein, with the exception of acute ischemia and reperfusion of the myocardium [33, 34] and the respiratory distress syndrome in preterm lambs [35]. Decreased or impaired activity of this transcription factor has profound consequences for the homeostatic control at the cellular and mitochondrial level and likely will affect apoptosis and cellular senescence which characterize pulmonary emphysema [20, 22].

In general, HIF-1α protein degradation is mediated by PHD, the von Hippel-Lindau/Elongin-C/Dlongin-B E3 ubiquitin ligase complex, and the proteasome [15]. The HIF-1α transactivation domain is also regulated by the binding of FIH-1 [15]. All of these control mechanisms are on the levels of protein degradation and/or post transcriptional regulation.
Histone deacetylases are of equal fundamental importance for transcriptional control. The histone deacetylase family of chromatin-modifying enzymes participates in post-translational modifications involved in epigenetic regulation. We and others [10, 11] have previously reported a significant decrease in the expression of VEGF and VEGFR2 (KDR) mRNA and protein in the lung tissue from patients with severe COPD/emphysema [10], and because a similar VEGF expression decrease had been reported in the lungs from animals exposed to lethal hyperoxia [36], we had hypothesized that overwhelming oxidant stress may destroy the transcriptional machinery which regulates VEGF expression. Because tissue samples from patients with lung cancer were included in our study, we considered the possibility of an enhanced expression of HIF-1α and VEGF in such patients. However, the samples were from tumor-free lung lobes and enhanced HIF-1α or VEGF expression was not found. For example, patient #11 had lung cancer but this patient’s HIF-1α protein expression was the lowest in mild COPD tissue (online supplemental Figure 1B). Given the consensus of the importance of oxidative stress in cigarette smoking related lung tissue destruction [6] and the data which show that HDAC2 expression is impaired by oxidative stress [27, 37] and that p53 protein is up-regulated in response to cellular stress, it is difficult to determine a single initial or primary event in the development of emphysema related to tobacco smoke exposure. In Figure 6, we propose mechanistic interactions between several of the pathobiologically
important components, which may in part also play a role in emphysema which develops in non-smokers.

Because HIF-1α protein is a major transcriptional controller of VEGF expression, and oxidative stress has been widely documented in human emphysematous lungs [38] and animal models of emphysema [39, 40], we reason that oxidative stress, directly or indirectly affects HIF-1α protein expression. Of associated interest is the finding that in COPD lungs both VEGF [10] and HIF-1α protein expression is reduced in pulmonary arterial endothelial cells and pulmonary septal cells (Figure 4). Recently, Charron et al. reported in A549 cells that hypoxia-induced HIF-1α regulates HDAC2 transcription [41]. Whether HIF-1α controls HDAC expression in lungs from COPD patients remains unclear.

The analysis of human tissue samples confirmed the reduction in the expression of VEGF protein and now also shows a reduction in the expression of the downstream cellular growth regulating protein pAkt in tissues from patients with severe COPD (Figure 1A, B and online supplemental Figure 1A).

The lung tissue levels of HIF-1α protein did not show a statistically significant correlation with the pack year smoking history (online supplemental Figure 3), however they did correlate with the % predicted FEV1 (Figure 3). In spite of the low level HIF-1α expression by Western blot (Figure 1 and online supplemental Figure 1) and ELISA (data not shown) in the majority of the lungs from COPD patients we did attempt immunohistochemical
HIF-1α localization as illustrated in Figure 4 and found a reduced expression of HIF-1α protein in pulmonary endothelial cells and pulmonary septal cells.

Upregulation of the pro-apoptotic p53 in human emphysema has been described by Tsuji et al. [22]. Increased p53 expression is indeed a consequence of HDAC inhibition [42], and our own data also show increased p53 expression in severe COPD/emphysema lung tissue samples (online supplemental Figure 2). Using human pulmonary microvascular endothelial cells and lung fibroblasts we knocked down HDAC2 gene expression and observed as a consequence decreased HIF-1α expression [43]. The significance of the increased expression of p53 in the COPD lung tissues may lie in the p53-dependent control of the expression of HIF-1α.

We have also analyzed the tissue samples for expression of Hsp90, a chaperone protein which forms complexes with HDAC6 and affects HIF-1α protein stability [44, 45]. Using Western blot analysis we did not find a significant reduction in the tissues from patients with COPD/emphysema compared with tissues from patients with normal lung function (online supplemental Figure 2A, B).

It may be possible to characterize human emphysema in smokers also as a “HIF-1α deficiency” problem. HIF-1α protein abundance may be reduced as a consequence of a combination of several factors among others: increased p53 expression (Figure 6). The schematic illustrates our attempt to connect signaling events both upstream and downstream
from VEGF. Whereas Kasahara et al. [10] reported decreased expression of the VEGFR2 (KDR) in human emphysema lungs, we now also report on decreased AKT phosphorylation and can connect decreased HIF-1α expression and AKT phosphorylation. Certainly AKT phosphorylation is determined by additional factors. What little residual HIF-1α protein remains in the COPD/emphysema lung may bind ineffectively to the HRE of target gene promoters as elegantly demonstrated by Breit et al. [46] and Ruchko et al. [47] for the VEGF transcriptional impairment under conditions of oxidative stress. Our study is limited by the relatively small number of patient samples and the lack of available data relating to the PaO2 of the patients. It is also possible that there may be regional expression differences of the genes and proteins between upper and lower lung lobes - such potentially side-specific expression differences could not been examined. As is evident, causal and mechanistic data cannot be obtained from single time point tissue samples and must be complemented by animal and cell model data [43].

In conclusion, we demonstrated decreased HIF-1α protein expressions in emphysematous lungs. The mechanisms whereby HIF-1α expression is reduced may include p53-dependent and p53-independent pathways as proposed in a recent publication [48]. In a greater context, we are now able to appreciate the problem of emphysematous tissue destruction also as an impairment of nuclear-transcriptional events. Given the postulated autocrine role of VEGF in controlling lung microvessel endothelial cell survival [10], our data
point towards a double jeopardy: VEGF transcription is limited by HIF-1α protein stability and the action of VEGF in the severely emphysematous lungs [20] is limited by a decreased VEGF receptor expression.
Acknowledgments

We like to thank Vita Kraskauskasiene for expert technical assistance.
References

15. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. *Physiology (Bethesda).* 2009; **24**:97-106.

18. Haddad JJ. Recombinant human interleukin (IL)-1 beta-mediated regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization, nuclear translocation and activation requires an antioxidant/reactive oxygen species (ROS)-sensitive mechanism. *Eur Cytokine Netw.* 2002; **13**:250-60.

Figure Legends

Fig. 1. Western blot analysis of cytoplasmic and nuclear proteins. Individual densitometric data and representative protein bands are shown. VEGF expression was related to β-actin protein, and pAkt was expressed relative to the Akt protein (A and B, respectively). HDAC2 and HIF-1α expression was related to Lamin B (C and D, respectively).

Compared with samples from patients with normal lung function, a significant reduction in the protein expression was seen in the samples from patients with severe COPD (A to D), and significant reduction of expression was seen in samples from patients with mild COPD (A). Compared with samples from patients with mild COPD, significant signal reduction was observed in the samples from patients with severe COPD (B, C). Data are expressed as mean ± SEM.
Fig. 2. Relationship between HDAC2 and HIF-1α proteins (A); HIF-1α protein and VEGF mRNA (B); and HIF-1α protein and GLUT1 mRNA (C). Both HIF-1α and HDAC2 proteins showed a strong correlation in all patients (A). A strong correlation was also
seen between HIF-1α protein and the downstream gene of VEGF/GLUT-1 genes in all patients (B, C). Open circles=samples from patients with normal lung function; open squares=samples from patients with mild COPD; closed diamonds=samples from patients with severe COPD.

Figure 2

![Graphs A, B, and C](image)

Fig. 3. Significant positive relationship between FEV1 % predicted and HIF1α protein were shown. Open circles=samples from patients with normal lung function; open
squares=samples from patients with mild COPD; closed diamonds=samples from patients with severe COPD. Data are expressed as mean ± SEM.

Figure 3

![Graph showing relationship between FEV1 % predicted and HIF-1α protein]

Fig. 4. HIF-1α protein localization analysis by immunohistochemistry. Normal human lung (A, B) and a lung tissue section from a patient with severe COPD were examined (C, D). Arrows in A, C show the endothelial cell layer. Arrows in B, C show HIF-1α positive alveolar septal cells. Reduced HIF-1α positivity was seen in both pulmonary endothelial and lung septal cells. Similar results were obtained when additional samples from patients with COPD were examined (not shown). Bars=50µm, original magnification;
x400. The bar graph shows the ratio of HIF-1 positive cells and total length of alveolar perimeter (TLAP) in lung sections from a patient with non-COPD (No COPD) or with severe COPD. Data are expressed as mean ± SE. *P < 0.05 versus No COPD.
Fig. 5 Relationship between HIF-1α gene and protein expression (A). Relationship between HIF-1α gene and HDAC2 protein (B). A significant correlation was seen of the gene and these two proteins. Open circles=samples from patients with normal lung function; open squares=samples from patients with mild COPD; closed diamonds=samples from patients with severe COPD.

Figure 5

![Graph A](image1)

![Graph B](image2)

Fig. 6 The schematic represents the molecular alterations in the emphysematous lungs.

Oxidative stress may inhibit HDAC2 protein expression and increase p53 protein
expression. The reduction of HDAC2 may upregulate p53 expression. Both upregulated p53 and reduced HDAC2 could reduce the HIF-1α protein. Insufficient HIF-1α causes impaired expression of downstream mRNA encoding VEGF and GLUT1 and may impair the binding to VEGF receptor and phosphorylation of AKT, which could cause lung cell apoptosis and emphysema. A decrease expression of the VEGF receptor (KDR) protein has been previously reported [10].

Figure 6
Table 1. Characteristics of patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No COPD</th>
<th>Mild COPD</th>
<th>Severe COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=7)</td>
<td>(N=6)</td>
<td>(N=13)</td>
</tr>
<tr>
<td>GOLD stage</td>
<td>-</td>
<td>1 and 2</td>
<td>3 and 4</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>63.3±7.1</td>
<td>69.8±3.6</td>
<td>*56.2±2.1</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>1/6</td>
<td>5/1</td>
<td>5/8</td>
</tr>
<tr>
<td>FEV1 (%)</td>
<td>115.9±8.5</td>
<td>79.7±3.3</td>
<td>21.1±2.3</td>
</tr>
<tr>
<td>Smoking (pack years)</td>
<td>0</td>
<td>35±6.8</td>
<td>61.3±9.0</td>
</tr>
<tr>
<td>Current smoker (no.)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Medication (no.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Corticosteroid</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Inhaled Corticosteroid</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Accompanied with lung cancer (no.)</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Definition of abbreviations; COPD=chronic obstructive pulmonary disease; GOLD=Global Initiative for Obstructive Lung Disease; FEV1 %= Forced Expiratory Volume in 1 Second % predict; Plus-minus values are means ± SE.; *P<0.05 vs mild COPD