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ABSTRACT (197 words) 

 An ERS Research Seminar on “Metabolic alterations in obstructive sleep apnea 

(OSA)” was jointly organised in October 2009 together with two EU COST Actions 

(“Cardiovascular Risk in the Obstructive Sleep Apnea Syndrome” - Action B26, and 

“Adipose Tissue and the Metabolic Syndrome” - Action BM0602) in order to discuss 

the interactions between obesity and OSA.  Such interactions can be particularly 

significant in the pathogenesis of metabolic abnormalities and increased cardiovascular 

risk in OSA patients. Studying the respective role of OSA and obesity, however, is 

difficult in patients, making it necessary to refer to animal models or in vitro systems. 

Since most OSA patients are obese, their management requires a multidisciplinary 

approach. This review summarizes some aspects of the pathophysiology and treatment 

of obesity, and the possible effects of sleep loss on metabolism. OSA-associated 

metabolic dysfunction  (insulin resistance, liver dysfunction, atherogenic dyslipidemia) 

is discussed from the perspectives of both obesity and OSA in adults and children. 

Finally, the effects of treatment for obesity or OSA, or both, on cardio-metabolic 

variables are summarized. Further interdisciplinary research is needed in order to 

develop new comprehensive treatment approaches aimed at reducing sleep disordered 

breathing, obesity and cardiovascular risk. 

Keywords: obesity, adipocyte, hypoxia, dyslipidemia, liver dysfunction 
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1. INTRODUCTION 

 The obesity epidemic worldwide has fostered intense investigation on adipose 

tissue, to prevent the morbidity linked to obesity and develop effective treatment. 

Obesity is a risk factor for diabetes and cardiovascular events 1,2, and increases mortality 

especially in middle-aged adults 3. Obesity rates are also rising in children 4 5. Since 

obese children tend to become obese adults 6, the cardiometabolic disease associated 

with obesity could begin in childhood 7. making pediatric obesity a major challenge for 

Public Health worldwide. 

 Adipose tissue is currently considered as a central player in metabolic regulation 

through production and release of multiple adipokines 8. Moreover, adipocytes and 

inflammatory cells such as macrophages show a high degree of interaction in obesity 

9,10. The resulting picture is complex and yet incomplete, and recent research has 

explored new directions, such as the pathophysiology of different fat depots in the body 

11, the role of hypoxia 12, and the interactions between adipose tissue and the central 

nervous system in response to nutrient excess 13.  Obesity has also been related to the 

chronic sleep loss typical of the current lifestyle in both adults and children 14,15. 

 Obesity is a common finding and a major pathogenetic factor in obstructive 

sleep apnea (OSA) in adults 16,17 and children 18,19 20. OSA is characterised by recurring 

episodes of upper airway obstruction during sleep 21, intermittent hypoxia 22, sleep 

fragmentation 23, excessive daytime sleepiness 21, and increased cardiovascular risk 24. 

Upper airway collapse during sleep can be prevented by application of nasal continuous 

positive airway pressure (CPAP), which is the treatment of choice for moderate-severe 

OSA in adults. In children, OSA is traditionally considered as a “local” disease due to 

high prevalence of adenotonsillar hypertrophy, and adenotosillectomy is usually 
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performed; however, only partial resolution of OSA is often observed, which likely 

reflects the additional impact of obesity 25,26.   

 Changes in body weight are known to affect OSA severity 27-29. Most adult 

patients with OSA have central obesity and increased visceral fat 30, the latter being 

associated with neck adiposity, increased upper airway fat 31 and metabolic 

abnormalities 32 even in normal-weight subjects. Gender-related differences in the 

amount of visceral fat 33 could contribute to the higher prevalence of OSA in men.  In 

children, besides the classic OSA phenotype associated with adenotonsillar hypertrophy 

34 and growth failure 35, it is possible to identify an obese OSA phenotype, similar to 

adult OSA 34.    

 It is conceivable that OSA and obesity may interact and potentiate their 

detrimental consequences. OSA-associated metabolic abnormalities have been 

reproduced in animal models exposed to a pattern of intermittent hypoxia similar to that 

found in humans with sleep-disordered breathing  36,37; on the other hand, hypoxia of 

adipocytes could play an important role in the metabolic disturbances associated with 

obesity 8,38.  In addition, OSA and obesity share common mechanisms such as 

inflammatory activation 39, oxidative stress 39  and increased sympathetic activity 40.  

 To discuss the complex relationship between OSA and obesity, the second 

Research Seminar on the “Metabolic effects of OSA” was organised in October 2009 by 

the ERS and two EU-funded Actions of the COST program (COoperation in Scientific 

and Technological Research), namely the COST Actions B26 on “OSA and 

Cardiovascular Risk” and BM0602 on “Adipose Tissue: a Key Target for Prevention of 

the Metabolic Syndrome”.  The first Seminar had taken place in 2007, and its focus had 

been primarily on the pathogenesis of insulin resistance (IR) in OSA 36. 
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 The purpose of this review is to provide an overview on the pathophysiology of 

obesity, including an essential description of the main aspects of adipose tissue biology, 

the pathogenesis and the implications of IR in tissues such as skeletal muscle and liver, 

the possible role of sleep loss in obesity, and current treatment for obesity. With this 

background, the role played by OSA in the pathogenesis of metabolic abnormalities in 

adults and children will be briefly reviewed, together with the effects of OSA treatment. 

The outline of the paper is reported in Table 1. As for genetic interactions between OSA 

and obesity, which were also discussed during the Seminar, the interested reader is 

referred to recently published reviews 41-43. 

  

 
2. ADIPOSE  TISSUE PATHOPHYSIOLOGY, INSULIN 

RESISTANCE AND METABOLIC SYNDROME  

 The aim of this Section of the review is to discuss some features of obesity that 

are important in the context of OSA, namely, the types and distribution of adipose tissue 

in obesity, and the mechanisms of adipocyte dysfunction.  

  

2.1 Types and distribution of adipose tissue in obesity 

 Adipose tissue exerts important endocrine functions involving multiple cross-

talk with other organs and tissues 44. Adipocytes produce hormones, cytokines and 

many other proteins and peptides, collectively called «adipokines», leading to fine 

tuning of fuel utilization, energy homeostasis, and cardiovascular function 8,45-47.  In 

addition, pre-adipocytes, lymphocytes, macrophages and endothelial cells contribute to 
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the secretory output of adipose tissue and play a key role for the endocrine activity of 

the different fat depots. 

 Obesity is characterized by the expansion of white adipose tissue, as a result of 

increased size (hypertrophy) and additionally by an increased number of adipocytes 

(hyperplasia) 48.  The number and size of adipocytes vary according to localization of 

fat 48, diet 49, genetic factors 50, sympathetic innervation 51 and gender 52.  Visceral 

adiposity is generally associated with hypertrophy of adipocytes 53.  A modest amount 

of brown adipose tissue (BAT) is also present in humans, its main function being heat 

production rather than energy storage. The peculiar anatomical and functional 

characteristics of BAT have been recently summarized 54-56.  

 The localization of excess white adipose tissue in the body carries relevant 

metabolic consequences. Increased visceral fat mass is associated with more severe 

health effects compared to peripheral obesity, characterized by predominant 

accumulation of subcutaneous fat 57. The expansion of visceral fat increases the risk of 

developing insulin resistance (IR), type 2 diabetes, atherosclerosis, OSA, 

steatohepatitis, and cardio- and cerebrovascular disease 3,58,59. Many clinical and 

biochemical factors associated with increased cardiovascular risk (i.e., dyslipidemia, 

arterial hypertension, hyperglycemia, hyperuricemia, and microalbuminuria) are often 

present in visceral (or central) obesity. The term “adiposopathy” has been proposed to 

indicate the strong link between visceral fat and obesity-associated metabolic 

abnormalities 60.  

 Recent data highlight the role of fat localization in modulating adipocyte 

function. Besides the classic distinction between visceral and subcutaneous fat, the latter 

can be subdivided into superficial and deep, with the deep fraction sharing many 
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features with visceral fat 61. Ectopic fat depots can be found in the epicardial, 

periadvential and perirenal regions, in pancreas, skeletal muscle and bone marrow 47. 

The physiology of adipose tissue in these localizations, and the cellular source of 

adipokines and inflammatory mediators, are incompletely understood but could 

contribute to the pathogenesis of obesity-associated abnormalities 47. Specifically, 

epicardial fat is a true visceral fat depot and a tight association of epicardial fat mass 

with risk of cardiovascular disease has been recently reported 62. 

 Clinically, increased abdominal circumference is the best marker of visceral 

obesity and predicts overall mortality 3.  To improve the clinical recognition of central 

obesity, the “Metabolic Syndrome” (MetS) has been defined as the association of some 

risk factors (i.e., increased waist circumference, high blood pressure, and dyslipidemia) 

59. The widely used NHANES-ATP III definition is based on simple criteria 63, but its 

clinical or epidemiological usefulness is not entirely clear 64. 

 Identification of specific metabolic phenotypes may help to focus on high-risk 

patients. For example, about 20% of the obese population are metabolically healthy 

(MHO) 65. The MHO phenotype is associated with early onset of obesity, predominance 

of subcutaneous over visceral fat, and a more favorable cardiovascular profile compared 

to patients with central obesity 66. Adipose tissue in the gluteofemoral region may play 

an important protective role against metabolic abnormalities and the associated 

cardiovascular risk, by acting as a “metabolic sink” for excess fat storage (reviewed in 

67,68).  The MHO phenotype might be more common in obese premenopausal women, 

who appear relatively protected from cardiometabolic risk 33 but show increased 

mortality associated with the MetS in the post-menopausal period 69. Conversely, 

“normal-weight metabolically obese” (NWMO) subjects show an apparently lean 
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phenotype, but their amount of visceral fat is larger than normal and associated with 

insulin resistance 32,65.  There are some uncertainties about definitions 70, and 

longitudinal studies on cardiometabolic risk in obesity subtypes are still lacking.  

 The functional attitudes of visceral and subcutaneous adipocytes are 

programmed quite early during development and differentiation 71. Adipocyte 

precursors are multipotent cells that reside in each fat depot and possess depot-specific 

genetic, biochemical and metabolic features 72. Metabolic activity is higher in visceral 

than in subcutaneous fat 11, and adipocytes located in the abdominal region display 

distinct features compared to adipocytes from other depots 73,74 in both normal-weight 

and  obese subjects. Visceral adipose tissue from nonobese humans responded faster 

and more intensely than subcutaneous adipose tissue to glucose or insulin exposure in 

vitro, with larger release of adiponectin, tumor necrosis factor-alpha (TNF-) and leptin 

11. Visceral adipocytes from obese subjects released larger amounts of inflammatory 

cytokines, such as interleukin (IL)-1beta, IL-6, IL-8, and adipokines such as leptin, 

compared to visceral adipocytes from lean subjects 75. Increased visceral fat and 

inflammation of adipose tissue were recently found in morbidly obese insulin-resistant 

subjects compared to weight-matched insulin-sensitive subjects, while the amount of 

subcutaneous fat was similar in the two groups 53. Thus, a specific dysfunction of 

visceral adipocytes is considered as the pathophysiological basis for the negative 

consequences of abdominal obesity. 

 A thorough discussion of adipokines is beyond the scope of this paper (see 8,45-

47,76 for further reading). Leptin and adiponectin will be briefly discussed since they 

exert complex and unique actions, and have been studied in patients with OSA. For both 
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adipokines higher circulating levels are found in females than in males 76, indicating 

that gender-related fat distribution may affect their expression and release 67.   

 Leptin is a polypeptide hormone produced by adipocytes in proportion to their 

triglyceride content, and is a major player in appetite regulation in the hypothalamus. 

Subcutaneous fat is the main site of production of leptin, and leptin release from 

samples of subcutaneous fat cultured in vitro correlates with the circulating leptin levels 

found in vivo in the same individuals 76. Human obesity is usually associated with high 

plasma leptin and attenuated leptin signaling (leptin resistance) 77, while defects in the 

leptin or leptin receptor genes are rare in clinical practice but have been fundamental to 

understand the physiology of leptin in animal models 78. Leptin might be involved in the 

pathogenesis of hypoventilation disorders 79 and its transcription is activated by 

exposure to continuous severe hypoxia in vitro 80. In recent years, the role of leptin in 

immune function and inflammation has been increasingly studied 81, and some data 

indicate that leptin could contribute to the pathogenesis of atherosclerotic lesions by 

promoting inflammation 82. All these data make leptin an interesting adipokine in the 

context of sleep-disordered breathing. 

 Adiponectin exerts an insulin-sensitizing action, and its levels are decreased in 

obesity 83-85. Adiponectin has antiatherogenic and anti-inflammatory properties, and its 

circulating levels are lower than normal in patients with type II diabetes, metabolic 

syndrome, hypertension, and coronary artery disease 84. Adiponectin is produced almost 

exclusively by mature adipocytes, and its expression is higher in subcutaneous than in 

visceral fat 86. Importantly, adiponectin is found in the circulation in different 

oligomeric forms and it is now accepted that the so-called high-molecular-weight form 

is of key importance for the biological effects of this hormone 87 Inflammatory 
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mediators such as TNF-alpha 88, and both continuous 89 and intermittent 90 hypoxia were 

found to inhibit adiponectin production in vitro. Adiponectin levels increase after 

weight loss or treatment with several drugs, such as fibrates, angiotensin-converting 

enzyme inhibitors, angiotensin II type I receptor blockers, thiazolidinediones, statin, and 

some calcium channel blockers 91. The protective role of adiponectin and its modulation 

by hypoxia suggest that it may be a useful marker of metabolic dysfunction in obesity 

and OSA. 

 

2.2 Mechanisms of adipose tissue dysfunction in obesity 

2.2.1. Inflammation 

 The recognition of inflammation as a major player in adipocyte dysfunction has 

been an important advance in obesity research. Inflammation was first reported to 

contribute to the pathogenesis of IR in 1993, when TNF- expression was demonstrated 

in adipose tissue of obese rodents and insulin sensitivity was restored after treatment 

with anti-TNF- antibodies 92. A long list of inflammatory mediators are involved in 

obesity and IR 93, and obesity is considered as a state of chronic, low-grade 

inflammation 9.   As obesity develops, adipose tissue becomes infiltrated with 

macrophages 94. Adipocyte-macrophage interactions contribute to development of IR,  

but other immune cells, like mast cells or lymphocytes, likely play a role 10,95.   

 The adipocyte can secrete inflammatory cytokines and attract monocytes by 

producing monocyte chemoattractant protein-1 (MCP-1) 94. In vitro, adipocytes and 

macrophages show considerable similarities in their gene expression and functional 

aspects 10. Both hypoxia 96 and decreased adiponectin 97 may play a role in macrophage 
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activation in obesity.  In obese animals, macrophages are found in close relationship 

with dead adipocytes (crown-like structures) 98, suggesting that their recruitment is 

linked to phagocytosis of cellular debris. In addition, a shift from an anti- to a pro-

inflammatory phenotype in adipose tissue macrophages has been demonstrated in both 

murine 99 and human 100 obesity.  In obese subjects, adipose tissue macrophages show 

increased expression of TNF-alpha and inducible nitric oxide synthase (iNOS), 

according to the classic pro-inflammatory activation pattern (M1); conversely, in lean 

subjects adipose tissue macrophages predominantly show the alternative pattern of 

activation (M2) characterized by overexpression, among other molecules, of the 

antiinflammatory cytokine IL-10 99. 

 Although inflammation contributes to the development of IR and MetS 9,93, the 

sequence of events leading to the inflammatory response in the adipose tissue is 

incompletely defined. An increased adipocyte size may be an important signal, through 

dysregulation of insulin signaling at the level of insulin receptor substrates (IRS). 

Phosphorylation of IRS-1, an early event in insulin signaling 101, is decreased in large 

adipocytes 102. Adipocyte size in visceral fat correlated with IR in severely obese 

patients, and a smaller adipocyte size was found in MHO patients compared to patients 

with the classic visceral obesity phenotype 103.  Adipocyte size also correlated with 

proliferation of adipose tissue-derived progenitor cells 104.  

 Activation of the NFkB pathway further interferes with IRS-1 phosphorylation 

10.  Nutrient excess causes endoplasmic reticulum (ER) stress, characterized by a 

complex disturbance in protein synthesis, in the adipocyte 105. The pathways of 

inflammation and ER stress appear to intersect at some crucial points, involving the 

protein kinases JNK1 and IKK 95. Finally, mitochondrial dysfunction was also 
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demonstrated in adipocytes exposed to hyperglycemia 106.  Therefore, inflammation 

impacts on several cellular pathways deeply disturbing adipocyte function. 

 

2.2.2 Hypoxia 

 Expansion of adipose tissue causes oxygen deprivation in large adipocytes as 

their distance from the vasculature increases 12,107. In vitro exposure of human and 

murine adipocytes to prolonged hypoxia decreased phosphorylation of IRS-1 and IRS-2 

and caused IR 108 109. Hypoxia in adipose tissue has been documented in obese humans 

110-112 and mice 113,114. In adipocytes in culture, continuous hypoxia stimulated the 

expression and secretion of several inflammation-related adipokines, including IL-6, 

leptin, angiopoietin-like protein-4 and vascular endothelial growth factor (VEGF) 113-115. 

Continuous hypoxia inhibited the production of adiponectin 89, while intermittent 

hypoxia (12 cycles/h for 6 h/day) was recently found to inhibit adiponectin secretion 

while upregulating its expression in adipocytes 90. 

 Many effects of hypoxia are mediated by the hypoxia-inducible factor-1 (HIF-1), 

a transcription factor resulting from the dimerization of an alpha subunit, which is 

continuously degraded in the cytoplasm under normoxic conditions, and a beta subunit 

constitutively expressed by the cell 116. When the oxygen level decreases, degradation of 

HIF-1alpha is inhibited and its cytoplasmic level increases, making it possible 

dimerization of HIF, its translocation to the nucleus, and the subsequent activation of 

transcription of several hypoxia-responsive genes 116.      

 Exposure to continuous hypoxia causes multiple adjustments in cell metabolism, 

including a switch to anaerobic glycolysis. In adipocytes, continuous hypoxia increased 
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the expression and protein level of the glucose transporter GLUT-1 117, glucose uptake, 

and release of lactate 118 119, but decreased the expression of the insulin-dependent 

glucose transporter GLUT-4 119. Among the genes upregulated by hypoxia, expression 

of metallothionein-3 increased by 600-fold, suggesting a role possibly linked to its 

antioxidant properties 120.  Thus, in vitro data indicate that HIF-1 activation may 

directly cause IR in adipocytes 108. However, a recent study in mice with defective 

expression of HIF-1 in adipose tissue found that these animals became more obese and 

insulin-resistant when exposed to a high-fat diet compared to wild-type mice 121. 

Decreased energy expenditure associated with dysfunction of BAT appeared more 

important than IR in this in vivo model 121. Therefore, further studies are needed to 

assess the role of hypoxia on brown and white adipose tissue in animal models and 

humans.  

 Recent measurements of tissue pO2 in lean rats during intermittent hypoxia or 

obstructive apnea cycles of comparable duration, showed that tissue pO2 oscillations 

were blunted in visceral adipose tissue 122, suggesting the possibility that changes in 

blood flow to adipose tissue might also occur in this model. More data are needed to 

better understand the effects of intermittent hypoxia on adipose tissue in order to assess 

whether specific alterations are responsible for the metabolic consequences of OSA. 

 

2.2.3 The lipoxygenase pathway and oxidative stress 

 Besides hypoxia, other pathways may contribute to adipocyte dysfunction in 

obesity. Adipose tissue from high calorie-fed obese mice showed increased expression 

of lipoxygenases (LO) 123 whose products could promote recruitment and activation of 
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macrophages to and within the adipose tissue 124. Knocked-out mice for 12-

lipoxygenase gene (12-LOKO) on a high-calorie diet showed normal TNF-, IL-6 and 

adiponectin release; in addition, MCP-1 concentration and the number of macrophages 

in adipose tissue were normal 123.  

 Oxidative stress could also play a role. 12-HETE directly controls the increased 

expression of MCP-1 in macrophages 125, and peroxidation products of HETEs may act 

as signaling molecules in adipocytes. For instance, 4-hydroxynonenal (4-HNE) exerts 

proinflammatory effects 126, but is normally neutralized by the enzyme glutathione-S-

transferase (GST). Mice with disrupted GST gene gained more weight and accumulated 

more visceral fat in comparison with control mice, and showed high levels of 4-HNE in 

tissues 127. 

 As a summary of this Section, adipocyte dysfunction in obesity shows both 

metabolic and pro-inflammatory effects, likely reflecting disturbance of different 

cellular pathways. Even though knowledge of adipocyte biology has expanded greatly, 

the many facets of human obesity deserve further investigation.  The emerging role of 

hypoxia and oxidative stress in the pathophysiology of obesity suggest possible 

interactions with OSA, in particular the activation of mechanisms common to both 

diseases. 

 

3. INSULIN RESISTANCE AND METABOLIC SYNDROME IN 

OSA 

 Increasing severity of OSA in adults is associated with IR and the MetS 36,37,128,  

suggesting a link between OSA, metabolic abnormalities and cardiovascular morbidity 
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and mortality 24,129,130 131-133. However, the independent role of OSA is still unclear, due 

to the difficulty in separating the effects of obesity and sleep-disordered breathing in 

human studies. 

 Characterization of non-obese adult OSA patients is extremely poor as far as 

metabolic abnormalities are concerned. No MetS component was found in about 10% of 

OSA patients referred for a sleep study; these patients were younger and showed mild-

moderate OSA compared to all other patients (Bonsignore, Barcelo et al, unpublished 

data). Absence of metabolic abnormalities might characterize an early stage in the 

natural history of OSA; alternatively, non-obese OSA patients could represent a distinct 

phenotype, as proposed for pediatric OSA 34.   

 On the other hand, increased visceral fat may be a critical factor also in non-

obese OSA patients, who show increased fat deposition in the abdomen and neck 

compared to controls 134. In a Japanese study, neck circumference normalized for height 

(NC/H) correlated with severity of OSA independent of visceral obesity, especially in 

non-obese subjects 135. Finally, two studies in the general population recently reported 

that neck circumference is an independent predictor of cardiometabolic risk 136 and of 

both MetS and OSA 137, but sleep studies were not performed in either study.  

 Clearly, the role of neck fat deposition, which has been extensively studied in 

the past for its relationship to upper airway dimensions and function, deserves further 

attention with regard to metabolic problems in OSA. Non-obese OSA patients appear 

strikingly similar to the phenotype of metabolically obese normal weight (MONW) 

subjects 65. However, no study to date has assessed cardiovascular risk or outcomes 

specifically in non-obese OSA patients.  
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 While the association of OSA with increased visceral fat has been known for a 

long time, the impact of increased subcutaneous fat on OSA and metabolic variables is 

much less clear. A recent epidemiological study reported that visceral and subcutaneous 

fat are associated with IR with different strength 138, indicating that more work is 

needed in this field as clinical cardiovascular outcomes are concerned. 

 This Section briefly discusses some results of human and animal studies on the 

effects of intermittent hypoxia (IH) and OSA on IR and the MetS.  

 

3.1 Clinical studies on metabolic abnormalities in OSA 

 Clinical and epidemiological studies have shown a progressive worsening of IR 

or MetS with OSA severity 139, 140-142 even in severe obesity 143, suggesting a causal role 

of OSA in metabolic derangements. In addition, there is evidence that IR develops 

during acute exposure to intermittent hypoxia in healthy humans 144. Due to space 

constraints, the reader is referred to recent reviews on the complex relationship between 

OSA, glucose metabolism, insulin resistance and diabetes 37,128,145-150. 

 The main finding against a role of OSA in altered glucose metabolism is that IR 

did not improve after CPAP treatment in many studies (see section 6.2). At least part of 

the variability in results may be accounted for by the sensitivity of methods to detect IR, 

especially if one considers the peculiar condition of OSA patients who develop 

respiratory events only at night. For example, acute CPAP application in diabetic 

patients was found to decrease glucose level variability, as assessed by continuous 

glucose monitoring 151,152. Similarly, glycosylated hemoglobin (HbA1c) could be a 
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sensitive marker of altered glucose metabolism in OSA in patients with 153  or without 

nondiabetes 154 , or with the MetS 155.  

 Both leptin and adiponectin have been studied in clinical OSA. Several studies 

have reported that OSA patients show increased leptin levels compared to BMI-matched 

controls 156-158. Some studies found that AHI or severity of nocturnal hypoxemia were 

independent predictors of plasma leptin concentration 159,160, while others only 

confirmed the known association of leptin with obesity but no independent effect of 

OSA 161-164. Most studies  examined male OSA patients, and gender-related differences 

are still unknown.  

 Adiponectin, a metabolically protective adipokine, was found to be decreased in 

OSA patients compared to controls in proportion to the severity of nocturnal hypoxemia 

165-167, suggesting a possible pathophysiological role of oxidative stress in decreased 

adiponectin levels in OSA.  Other studies, however, reported a closer relationship of 

low adiponectin levels with obesity than with OSA 164,168. A recent study found that, 

while daytime adiponectin levels correlated with several measures of obesity, the 

nocturnal fall in circulating adiponectin in OSA patients correlated only with the waist-

to-hip ratio, suggesting that adipose tissue distribution may modulate nocturnal 

adiponectin levels 169.  

 Case-control studies conducted in MetS patients have provided other pieces of 

evidence on the effects of OSA on cardiometabolic variables. Compared to patients with 

MetS but no OSA, patients with MetS and OSA showed: a) more severe vascular 

dysfunction 170; b) independent associations of OSA with triglyceride and glucose 

levels, C-reactive protein, uric acid and increased total/HDL cholesterol ratio 142; and  c) 

higher blood pressure and more severe autonomic dysfunction 171. Similarly, in 
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hypertensive patients metabolic abnormalities were the strongest predictors of OSA 172. 

It has been proposed that OSA should be considered as an additional component of the 

MetS 146,173; recent findings in patients with MetS suggest that OSA may contribute to 

worsen metabolic abnormalities or could represent a marker of MetS severity170 142 171. 

 Excessive daytime sleepiness (EDS) is a major symptom of OSA, and could be a 

marker of OSA severity.  Two case-control studies reported that EDS predicts IR in 

OSA patients 174,175; only sleepy patients showed improved insulin sensitivity after 

CPAP treatment for 3 months 174. EDS in OSA patients was also found to be associated 

with type 2 diabetes 176. Other studies, however, did not confirm the association of 

subjective EDS and a worse metabolic profile in  MetS patients 142 or in morbidly obese 

patients 143 or in unselected consecutive OSA patients (Bonsignore, unpublished data). 

Therefore, the significance of EDS as a marker of metabolic abnormalities remains to be 

ascertained and is the focus of current clinical research.  

 

3.2 The intermittent hypoxia mouse model  

 To better dissect the mechanisms by which OSA may affect metabolism, a 

mouse model of IH has been developed which reproduces some of the effects of human 

OSA 177. Its main advantage is the possibility to study the response to IH in lean and fat 

animals in several tissues by mimicking the IH pattern occurring during the sleep in 

humans with OSA. The model has also some disadvantages, such as absence of 

intermittent hypercapnia 122 and occurrence of sleep disruption, characterized by a 

deficit in REM sleep and decreased delta power during non-REM sleep 178. To 
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overcome these limitations, a model of OSA in rats was recently developed 179, but up 

to now has been used only in short-term studies.   

 In lean mice, acute IH caused IR 180, but IH for several days did not 181, possibly 

because prolonged exposure to IH was associated with failure to gain weight, which 

exerted positive effects on insulin sensitivity.  In contrast, in mice with genetic or diet-

induced obesity, chronic IH worsened IR 181.  

 There is no evidence that IH impairs pancreatic -cell function, although -cell 

proliferation and apoptosis occurred in mice exposed to IH 182,183. IR during IH can be 

mediated via multiple pathways 177. Among them, activity of the sympathetic nervous 

system did not appear to play a major role in the effects of acute IH in lean mice 180. 

Acute IH increased corticosterone release, which could have contributed to IR 180. The 

metabolic effects of IH were larger in obese compared to lean animals, suggesting that 

isolated IH may be insufficient to cause significant damage. The results of such 

experimental studies suggest the hypothesis that OSA could worsen metabolism in 

obese subjects while its effects might be limited in nonobese subjects, as recently found 

in a randomized controlled trial on the effects of CPAP on IR 184. However, a previous 

study had reported different results, i.e., insulin sensitivity improved more in nonobese 

than in obese OSA subjects after CPAP treatment 185. Therefore, the clinical impact of 

OSA and its treatment on IR requires further evaluation, especially in lean patients. 

 To summarize this Section, studies in both OSA patients and animal models 

indicate that OSA likely contributes to IR, even though its effect may be relatively 

minor compared to the effect of obesity. However, it should be underlined that human 

OSA is a multiple component disease, including intermittent hypoxia and sleep 

fragmentation. The respective contribution of respiratory and polysomnographic 
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parameters to metabolic variables in OSA patients is also a clinically important issue, 

but could not be addressed in this review due to space limitations. 

 

4. ECTOPIC FAT AND DYSLIPIDEMIA  

 The metabolic abnormalities of adipocytes in obesity are further amplified by 

ectopic fat deposition 44. As storage capacity of adipose tissue is overwhelmed, 

decreased insulin action in adipose tissue increases lipolysis and release of free fatty 

acids (FFA) into the circulation, and IR develops in peripheral tissues (the “lipotoxicity” 

picture) 186-190. The main targets of FFA in this “overflow hypothesis” 44 are skeletal 

muscle and the liver (Figure 1).  

 Obesity increases the amount of perivascular adipose tissue. Previously 

considered to exert mainly a mechanical support function, perivascular fat has been 

recently shown to normally exert a vasorelaxant action 191. Obesity and the associated 

IR appear to blunt the physiological effect of perivascular fat, causing vascular 

dysfunction in obese animals 192 and humans 193, with obvious implications for the 

pathogenesis of cardiovascular disease associated with obesity. 

 The possibility that ectopic fat deposition may affect pancreatic exocrine 

function has been recently explored. Pancreatic fat deposition was found in mice fed a 

high-fat diet and in pathology specimens from patients with type 2 diabetes, in the form 

of adipocyte infiltration and modified lipid content of pancreatic exocrine tissue 194. In 

obese subjects, pancreatic fat deposition increased with increasing visceral fat in men 195 

but, besides its association with IR, no clear effect of beta-cell function could be 

demonstrated 196. Therefore, the pancreas might also be a target in visceral obesity, but 
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more studies are needed to verify the clinical importance of pancreatic fat accumulation 

on exocrine and endocrine function. 

 The available information on the effects of obesity, OSA and experimental IH on 

muscle and liver metabolism is summarized in the following subsections. 

 

4.1 Skeletal muscle adipose tissue in obesity and OSA 

 Obese subjects show increased intra- and intercellular fat deposition in skeletal 

muscle 189,197. By releasing endocrine and metabolic mediators (including TNF-, IL-6, 

leptin, and adiponectin), adipose tissue cross-talks with skeletal muscle, a process that 

precedes and underlies the development of muscle IR 189. IR in skeletal muscle is 

strongly linked to elevated adipose tissue mass 188,189.  

 IR in skeletal muscle was initially hypothesized to be secondary to the increased 

availability of FFA, with subsequent activation of fat oxidation and inhibition of 

glucose utilization. This hypothesis predicted intracellular accumulation of glucose-6-

phosphate (G6P), due to inhibition of the early steps of glycolysis. However, exposure 

to FFA was shown to decrease, not increase, intracellular G6P concentration. Therefore, 

similar to what happens in adipose tissue, impaired insulin-dependent glucose transport 

plays a major role in skeletal muscle IR (reviewed in 198). Macrophage infiltration of 

adipose tissue interspersed between myofibers occurs in obesity 189, and inflammation 

exerts negative effects also in skeletal muscle 199. A thorough description of muscle IR 

is beyond the purpose of this paper (see 189,198 for recent reviews).  

 There are no studies on IR in skeletal muscle in OSA patients, but one study in 

mice subjected to IH for 9 hours found that glucose utilization decreased and IR 
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increased in oxidative (soleus) but not in glycolytic (vastus) muscles 180. Some studies 

have reported a low exercise capacity in OSA patients, suggesting that OSA may impact 

on muscle metabolism 200.  

 

4.2 Hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) 

4.2.1 Obesity   

 Obesity causes intracellular accumulation of lipids in the liver 187,201, leading to 

hepatic steatosis which is pathologically defined as presence of fat in more than 5% of 

hepatocytes. Activation of macrophage-like Kupffer cells in the liver is also common in 

obesity 202.  

 Hepatic steatosis is the first step of nonalcoholic fatty liver disease (NAFLD), 

which includes a spectrum of pathologic conditions - steatosis without inflammation, 

nonalcoholic steatohepatitis (NASH), and liver fibrosis 203-206.  NAFLD increases the 

risk of developing cryptogenic cirrhosis and hepatocarcinoma 207.  NAFLD is common 

in obese adults 203,204,208-211 and children 212, and is considered as the hepatic 

manifestation of the MetS. NAFLD could develop in steps, with IR and obesity acting 

as the ‘first hit’ and causing hepatic steatosis 205,206, and oxidative stress, lipid 

peroxidation and inflammation likely implicated in the ‘second hit’ 205-207. Although 

skeletal muscle is of major importance for insulin-regulated glucose disposal, liver 

insulin resistance will lead to enhanced hepatic glucose production, which may 

significantly contribute to impaired glucose tolerance and/or hyperglycemia. 

 Different mechanisms have been proposed to explain the pathogenesis of 

NAFDL in obesity 213. The main view considers hepatic accumulation of fat as a 
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consequence of obesity and IR 198.  Conversely, other studies suggested that fat 

accumulation in the liver may cause IR independent of visceral fat 214,215. Finally, 

accumulation of triglycerides in the liver may not be detrimental per se, and could 

actually exert a protective role by limiting the accumulation of FFA 216.  

 According to the main view, the liver in obesity is loaded with excess FFA from 

dietary sources, adipose tissue, and de novo synthesis of lipids 201,217. Release of FFA 

from the adipose tissue accounts for a large proportion of liver fat 217, and is favored by 

IR at the adipocyte level, since insulin normally promotes lipid storage and inhibits 

lipolysis and FFA release by adipocytes 218. While FFA uptake in the liver is increased  

214, their beta-oxidation is impaired 201 219. Moreover, hyperglycemia and 

hyperinsulinemia enhance de novo lipogenesis in the liver 213. Therefore, in very 

simplified terms, liver steatosis in obesity results from disturbance in several steps of 

FFA/lipid handling.  

 The cause of the transition from steatosis to steatohepatitis is incompletely 

defined.  Inflammation is a major culprit 187,213, since liver Kupffer cells could play a 

role similar to that of macrophages in adipose tissue 99. Indeed, depletion of Kupffer 

cells in an animal model prevented the development of IR and lipid accumulation in the 

liver 202.  

 

4.2.2 OSA  

 The link between altered metabolism and inflammation in obesity may be 

amplified in OSA 220.  Increased circulating FFA have been recently reported in patients 

with OSA without the MetS compared to gender, age-, and BMI-matched controls 221 
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and in patients with chronic heart failure and OSA during sleep 222, suggesting an effect 

of OSA on lipid metabolism independent of concurrent obesity. 

 The association of OSA and fatty liver has been recently reviewed 223.  About 

50% of patients with NAFLD refer symptoms of OSA 224, and some case reports 

suggest that severe OSA may lead to liver injury 225-227.  Noninvasive imaging 

techniques, such as ultrasound or CT scans, do not currently help to distinguish between 

simple steatosis and NASH 228-230.  Since liver enzymes are neither sensitive nor 

specific predictors of NAFLD-related liver damage 207,208, data on NAFLD have been 

mostly obtained by liver biopsy in obese patients undergoing bariatric surgery  207,231.  

 In morbidly obese subjects, the degree of liver pathologic abnormalities and/or 

enzymes increased with OSA severity in some 232-235 but not all studies 236,237. Table 2 

summarizes the main studies on liver function in OSA patients. In subjects with OSA 

and elevated liver enzymes in the absence of any known liver disease, an AHI > 50 was 

associated with more severe hepatic steatosis, necrosis and fibrosis compared to patients 

with an AHI ≤50, despite similar degree of obesity 238. Other studies reported an 

association of IH during sleep with NASH and liver fibrosis 232,234,239 or high serum 

aminotransferase levels 240. Severity of nocturnal hypoxemia correlated with markers of 

liver dysfunction also in non-obese OSA patients 239. In children, OSA was associated 

with elevated liver enzyme levels 241,242, which normalized after adenotonsillectomy 241. 

Therefore, some clinical data support the possibility that OSA may worsen liver 

function. 

 

4.2.3 Intermittent hypoxia in animal models 



 26

 In mice fed a high-calorie diet, IH converted hepatic steatosis to steatohepatitis 

and liver fibrosis, and caused oxidative stress in the liver by up-regulating an important 

enzyme of oxidative stress, NADPH oxidase 243. Similarly, exposure of rats to 

chemically-induced hypoxemia enhanced the development of NASH induced by high-

fat diet 244. In lean mice on regular chow diet, exposure to IH for 12 weeks caused only 

minor liver injury 245. These data suggest that IH alone is insufficient to cause 

steatohepatitis but could amplify the damage caused by obesity. 

 

4.3 Dyslipidemia in obesity and OSA 

 Obesity, the MetS and type 2 diabetes are characterized by a specific pattern of 

plasma lipids, called atherogenic dyslipidemia 246, which is a powerful cardiovascular 

risk factor 247 248,249. Atherogenic dyslipidemia is also common in OSA, and a role for 

OSA in worsening dyslipidemia is suggested by several experimental and clinical 

studies. 

 

4.3.1 Obesity 

 The hallmarks of atherogenic dyslipidemia associated with obesity and type 2 

diabetes are: high fasting levels of triglycerides (TG), total cholesterol, and cholesterol 

associated with very low- (VLDL) and low-density (LDL) lipoproteins, and low HDL 

cholesterol 247 The liver plays a central role in lipoprotein metabolism (see 250-252 for 

reviews). Briefly, synthesis, modification, and clearance of lipoproteins are complex 

processes, modulated by insulin at several steps. A major feature of obesity is the 

overproduction of VLDL, due to increased release of FFA by visceral adipose tissue 251. 
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 Apolipoprotein-B (Apo-B) is an essential constituent of atherogenic particles, 

and its plasma level is increasingly used as a clinical marker of atherogenesis 252,253. The 

size of lipoproteins is a crucial determinant of their atherogenetic potential, since small 

particles remain trapped in the subintimal vascular layer, where they initiate and sustain 

plaque formation. While the role played by small dense low-density lipoproteins 

(sdLDL) in atherogenesis has been known for a long time 254, recent research has 

examined the risk linked to remnant lipoproteins, derived from metabolism of 

trygliceride-rich lipoproteins (TRL) 255.  

 Obesity is also characterized by low levels of HDL-cholesterol, which is 

considered to exert protective cardiovascular effects. Decreased HDL is in part 

secondary to an exchange of cholesterol-triglycerides between HDL and TRL particles, 

which occurs when triglyceride-rich lipoprotein levels increase 251. Hepatic and 

endothelial lipases have also been shown to modulate HDL levels in obesity 251. 

 

4.3.2 OSA 

 The association between OSA and dyslipidemia has been explored in several 

studies. In a large community-based sample (Sleep Heart Health Study), OSA severity 

correlated with fasting total cholesterol levels independent of body mass index (BMI) 

256. In elderly subjects, OSA was associated with low HDL-cholesterol levels 

independent of age and BMI 257.  

 In a case-control study, patients with OSA had higher total and LDL cholesterol 

levels compared to controls matched for age, BMI and smoking status 258. Increased 
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Apo-B levels have been found in adult 259 and pediatric 260 OSA patients, and Apo-B 

decreased after effective OSA treatment 259-261.    

 OSA patients show decreased levels of lipoprotein lipase 262 and pro-atherogenic 

dyslipidemia 141,263-265. Severity of nocturnal hypoxemia predicted increased liver levels 

of stearoyl coenzyme A desaturase (SCD-1), an enzyme involved in triglyceride 

biosynthesis and lipopotein secretion, in obese OSA patients 232. In contrast, other 

studies found similar plasma lipids in patients with OSA and controls 170,266-268. HDL 

dysfunction has also been found in OSA 267. Therefore, OSA appears associated with 

dyslipidemia, but data are still insufficient to confirm a causal relationship. 

 

4.3.3 Intermittent hypoxia in animal models 

 In lean mice, chronic IH increased serum total cholesterol, triglycerides, VLDL-

cholesterol, LDL-cholesterol, and lipid liver content 269-271 proportionally to the severity 

of the hypoxic stimulus 271 In obese ob/ob mice, chronic IH exacerbated dyslipidemia, 

hepatic steatosis and IR 181,269. While isolated chronic IH was insufficient to cause 

atherosclerosis, it greatly potentiated the pro-atherogenic effects of a high-cholesterol 

diet 272.  

 Studies in mice have identified some steps of hepatic lipid biosynthesis which 

are affected by IH 213 273. IH increases hepatic levels of the transcription factor sterol 

regulatory element binding protein-1 (SREBP-1) and of SCD-1 269,270,274. Dyslipidemia 

and hepatic steatosis in mice exposed to chronic IH were associated with up-regulation 

of SCD-1 269-272 275, while depletion of SCD-1 reversed hyperlipidemia 274. Thus, 

chronic IH may induce metabolic dysfunction via SCD-1. 
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 The mechanisms by which IH impacts on hepatic lipid biosynthesis are poorly 

understood. Hypoxic activation of HIF-1 may play a role, since mice with partial 

deficiency of HIF-1 exposed to IH showed attenuated hyperlipidemia, IR, hepatic 

steatosis, and SCD-1 induction 276.  However, other pathways may also be involved. 

First, acute hypoxia induces lipolysis, possibly via sympathetic activation 277. Second, 

hypoxia may suppress -oxidation of fatty acids 278. Finally, IH decreases the activity of 

lipoprotein lipase (LpL) in adipose tissue 279, which plays a primary role in the 

hydrolysis of triglycerides in circulating chilomicrons and VLDL 280,281. 

 As a summary of this Section, Figure 1 schematically reports the metabolic 

abnormalities found in visceral obesity and OSA, and highlights points of possible 

detrimental synergies of both conditions. 

  

5. THE METABOLIC EFFECTS OF SLEEP LOSS 

 Sleep loss may play a role in the pathogenesis of obesity and metabolic 

abnormalities, as suggested by epidemiological and mechanistic studies 14,15. An 

association of self-reported short sleep and/or sleep disruption with the MetS has been 

found in the general population 282-284 and shift workers 285,286. Short sleep duration may 

increase the risk of incident diabetes 287,288 and stroke 289. Some studies suggest that 

sleep loss may contribute to the pathogenesis of cardiovascular disease in shift workers 

290-292. 

 Cross-sectional epidemiological data in adults and children have shown an 

association between obesity and self-reported short sleep duration and/or poor quality of 

sleep 14,293-295.  A negative linear association between baseline habitual sleep duration 
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and later obesity has been demonstrated by prospective longitudinal data in children 295 

but not in adults 296. However, there are no experimental data in children or adults 

demonstrating that shortened sleep and/or poor sleep quality are causally related to the 

increased prevalence of obesity. Furthermore, in mice chronic sleep restriction induced 

a catabolic state and weight loss despite increased feeding 297.   

 Reduced sleep duration (at least in the short-term) may increase the risk of 

weight gain by altering the regulation of appetite and by reducing insulin sensitivity 298-

300. Slow wave sleep (SWS) appears to play a protective role 301, in agreement with 

cross-sectional population data showing an inverse association between the amount of 

SWS and BMI.  In addition, even a modest sleep restriction is associated with increased 

release of inflammatory cytokines in healthy young adults 302. Finally, circadian 

rhythms are increasingly studied with special attention to the role of peripheral clock 

genes in obesity, diabetes and cardiovascular disease 303-307.   

 Little is known about the effects of sleep fragmentation, as it occurs in OSA 

patients, on metabolic variables. One recent study showed decreased insulin sensitivity 

and increased sympathetic activation in normal subjects after acute sleep fragmentation 

308.    

 In the future, studies will need to closely examine compartment-specific adipose 

tissue (especially visceral fat) under conditions of sleep restriction and/or disruption. 

Experimental manipulation of sleep requires intensive sampling over day and night 

under conditions of constant routine. The role of OSA-associated sleep disruption in 

promoting visceral obesity is still an open question. 
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6. EFFECTS OF TREATMENT FOR OBESITY AND OSA 

 The aim of this Section is to briefly discuss some aspects of obesity and OSA 

with regard to treatment. In particular, the major problem of weight loss by 

pharmacologic treatment or bariatric surgery is addressed in obese and OSA patients, as 

well as the changes in metabolic variables observed after CPAP treatment.  

6.1 Therapeutic strategies in obesity and the metabolic impact of weight loss 

 Interventions aiming at correcting visceral adipocyte dysfunction may positively 

modulate the clinical phenotype and cardiometabolic outcomes of MetS patients 309. 

Non-pharmacological approaches, such as diet to reduce caloric intake and exercise to 

increase energy expenditure, are the most effective interventions to improve metabolism 

and prevent type 2 diabetes in individuals at risk 310,311.  

 Other modalities of weight loss, such as bariatric surgery or medications, may 

have more success in the long-term than diet alone, as summarized in a recent review 

312. Laparoscopic gastric banding in severe obesity is a safe and effective method to 

achieve long-term weight reduction 313-315. The Swedish Obesity Study has shown long-

term weight loss and decreased 10-year mortality in severely obese patients randomized 

to bariatric surgery compared to those undergoing conventional dietary treatment 316.  

 A comprehensive discussion of the treatment of obesity is beyond the scope of 

this article. It is worth noting that the development of new drugs to improve insulin 

sensitivity and reduce body weight is a major continuing challenge for the 

pharmaceutical industry. For example, drugs that improve insulin action are available 

(i.e., specific agonists of the PPAR-gamma nuclear receptor), but their usefulness in 

obese patients is limited since they may also promote weight gain 309. 
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Thiazolidinediones are also a class of medications with severe side effects. In addition, 

the development of drugs for obesity has been until now hampered by significant side 

effects, as recently shown by the experience with rimonabant, a selective antagonist of 

endocannabinoid CB1 receptor. Endocannabinoid CB1 receptors initially appeared as a 

good target for treatment, since they are highly expressed in regions of the brain 

involved in feeding and energy regulation, but also in adipose tissue, gastrointestinal 

tract, liver and skeletal muscle 317.  In phase-3 clinical trials, rimonabant caused weight 

loss and improved the metabolic profile 309,  but had to be withdrawn from the market 

because of major psychiatric side effects 318.   Another recent target for obesity 

treatment is represented by the incretin system 319. The results are promising for the 

treatment of obese patients, since incretin mimetics were found to reduce overall body 

fat with prominent effects on visceral adipose tissue 320,321.   

 Inflammation in visceral obesity is another potential intervention target, and 

salicylate derivatives are currently under intense investigation 322-325. However, efficacy 

of new drugs needs to be tested not only for reduction of body weight, but also for 

prevention of cardiovascular events in the long term. In addition, new drugs should be 

specifically studied in patients of different ages, given the significant prevalence of 

obesity in young and old subjects 326. 

 

6.2 Metabolic impact of CPAP treatment in OSA 

 CPAP intervention studies can provide information on whether specific health 

effects in obese patients can be modified by reversal of OSA. In general, analysis of the 

effects of CPAP is complicated by the variable compliance and adherence to treatment 
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by OSA patients.  CPAP treatment does not promote weight loss 327, and did not clearly 

affect diabetes 328 or other metabolic disorders 37. The majority of recent studies, 

including randomized controlled trials 329-331, showed no effect of CPAP treatment on 

metabolic variables despite improvements in sleepiness and blood pressure, as recently 

summarized 37,128,149,150,332,333. However, a recent RCT in Chinese male OSA patients 

without significant comorbidities reported inproved insulin sensitivity in the effective 

CPAP group after 1 week of treatment, which was maintained at 3 months only in 

overweight/obese patients 184.    

 Circulating leptin decreased after CPAP treatment 156,334, especially in nonobese 

157,335 and CPAP-compliant 336,337 patients.  CPAP treatment also reversed low serum 

adiponectin levels in obese OSA patients 165,166, even though IR was unaffected 166. 

These data are in agreement with the experimental findings that both continuous and 

intermittent hypoxia in vitro inhibit adiponectin production or secretion by adipocytes 

37,89,90,114, but firm evidence is still missing, given the negative result of a RCT 331. 

 A similar uncertainty exists with regard to the effects of CPAP treatment on liver 

dysfunction. In an observational study, CPAP treatment for OSA for a single night 

slightly but significantly decreased serum ALT and AST levels 338. In contrast, a 

randomized controlled study found no difference in liver enzymes after effective or 

sham CPAP treatment 339.  Whether CPAP treatment for OSA affects liver pathology, 

i.e. the amount of fat deposition and NAFLD severity, is currently unknown. 

 Several non-randomized and randomized studies have examined the effect of 

OSA treatment on plasma lipids. Chin and coworkers first showed that CPAP treatment 

decreased LDL-C and increased HDL-C levels 340,341.  Positive effects of CPAP on 

lipids were reported in 3 non-randomized studies 259,261,334. A large RCT found 
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decreased plasma cholesterol levels after therapeu.tic but not after sub-therapeutic 

CPAP for one month 342. Three other randomized studies showed no effect of CPAP, 

but they included small numbers of subjects 259,329,334. Therefore, current evidence 

suggests that CPAP treatment may decrease total and LDL cholesterol levels. 

Unfortunately, none of the available studies stratified patients for obesity. 

 

6.3 Metabolic impact of weight loss in OSA  

 Although changes in weight were associated with changes in OSA severity in 

both population and clinic-based studies 28-31, weight loss research for OSA has been 

hampered with doubts about the long-term effectiveness of weight loss as the only 

treatment in OSA. It is still unknown whether OSA patients could lose weight in the 

short- or long-term, and by what method this might be best achieved 343. A recent 

randomized controlled trial of diet-induced weight loss for mild OSA reported positive 

results 344, but mild OSA may carry limited or no morbidity. In moderate-to-severe 

OSA, a therapeutic approach combining CPAP with diet to reduce weight might be 

more appropriate, as suggested by two recent RCT in obese diabetic 345 or nondiabetic 

346 OSA patients. Data after 1-year follow-up suggest that long-term maintenance of 

weight after initial very low energy diet in obese OSA patients is associated with 

persistent improvement of OSA 347. Other studies reported less optimistic results after a 

2-year follow-up 348. 

 Bariatric surgery has also been used in OSA patients. In the Swedish Obesity 

Study cohort, prevalence of OSA-related symptoms at 2-year follow-up decreased 

proportionally to weight loss 349. According to a 2004 meta-analysis, OSA resolved in 
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85% of the patients after bariatric surgery 349, as confirmed by studies including 

polysomnographic assessment 350-352.  

 As for use of medications to treat obesity, the effects of sibutramine have been 

recently assessed in obese OSA patients.  Sibutramine did not affect sleep 353, and 

weight loss was associated with improved AHI and daytime sleepiness over a 6-month 

period 354. The metabolic profile improved in obese OSA patients treated with 

sibutramine, low-calorie diet and exercise for 6 months 355. Another study compared the 

effects of sibutramine to those of CPAP in patients who had been allowed to choose 

between the two treatments 356. Sibutramine treatment caused a 5-kg weight loss over 

one year and positively modified oxygen saturation during sleep, but did not affect AHI 

or cardiovascular variables. Conversely, CPAP-treated patients improved their 

respiratory variables during sleep and daytime blood pressure but did not lose weight 

356. Unfortunately, the results of these studies are not going to impact on the clinical 

management of OSA patients, since in early 2010 sibutramine has been withdrawn in 

Europe due to increased cardiovascular events associated with prolonged administration 

of the drug 357.  

 Overall, these studies underline the need for individualized treatment of obesity 

in OSA patients. Life-long adherence to CPAP treatment is a problem in OSA treatment 

358, justifying additional pharmacologic approaches. It is likely that OSA treatment and 

metabolic risk management, possibly integrated in the same sleep center, may be 

necessary to obtain optimal results,  but evidence-based management strategies are still 

missing. 
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7. OBESITY AND OSA IN CHILDREN 

 Obesity and the MetS in children have been increasingly studied in the last 

decade. More than genetic defects, sedentary lifestyle and unhealthy food habits are 

considered the main culprits of pediatric obesity 359 and the rising prevalence of type 2 

diabetes in the young population 360.  Clinically, the immediate and long-term effects of 

childhood obesity are strikingky similar to those of adult obesity (reviewed in 359). 

There is evidence that cardiovascular lesions develop in obese children 361, raising 

concerns about the long-term impact of childhood obesity on health.    

 Prevalence of OSA in children is expected to increase due to the rise in obesity 

18,19 20. Besides its immediate effects (snoring, daytime symptoms), pediatric OSA may 

influence the natural history of sleep disordered breathing in adulthood 362, including 

metabolic dysfunction. However, not every child with OSA will manifest adverse 

consequences, suggesting modulation by genetic and environmental factors 363. 

 OSA and obesity likely interact at the level of upper airways. Obese children 

with OSA showed a larger size of tonsils and adenoids compared to controls 364,365, and 

a higher risk of residual OSA after adenotonsillectomy 364,366. On the other hand, upper 

airway closure may occur in obese children for a smaller degree of tonsil and adenoid 

enlargement than in non-obese children 364.  The relative contribution of (central) 

obesity and adenotonsillar hypertrophy remains to be elucidated and may differ between 

young children, in whom adenotonsillar hypertrophy might play a major role, and 

adolescents, who show a predominant role of obesity 367. Recent studies have tried to 

address the impact of fat distribution and neck anatomy in a case-control study of obese 

children with and without OSA 368, but more studies are needed before drawing any 

conclusion on this topic. It should be pointed out that hereditable factors influencing 
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craniofacial structures represent important predisposing conditions to develop upper 

airway obstruction, together with the acquired factors of adenotonsillar hypertrophy and 

obesity 369. 

 Similar to adults, obese children and adolescents often develop the MetS 370 371 

372-374, which appears linked to visceral obesity and ectopic fat deposition 375,  secondary 

to excess caloric intake and reduced physical activity. While obesity is known to 

increase the risk for OSA, it is unclear whether OSA in children is directly involved in 

the pathogenesis of the MetS. Differently from adults, the pediatric population is 

relatively free from prolonged exposure to cardiometabolic risk factors, and childhood 

OSA causes a lesser degree of oxygen desaturation than adult OSA, resulting in milder 

intermittent hypoxemia compared to adult patients. OSA-associated nocturnal 

hypoxemia in children independently predicted the MetS and glucose intolerance 376-378,  

and prevalence of the MetS increased with increasing severity of OSA 379-381, together 

with markers of inflammation 381, arterial alterations 382, and excessive daytime 

sleepiness 381,383. In non-obese children, HDL-cholesterol level was recently found to be 

inversely correlated with OSA severity 384  Conversely, other studies suggested that IR 

in children with OSA is associated with obesity rather than with OSA 385-387. 

 A similar degree of uncertainty regards liver dysfunction. Two studies reported 

increased elevated serum aminotransferase levels in obese children with OSA, 

suggesting that OSA could act as a “second hit” in the development of NAFLD in 

children 241,242. Increased leptin levels have been reported in children with OSA, in the 

absence of changes in either adiponectin or resistin 388. Other studies suggested that 

adiponectin is a sensitive marker of OSA in obese pubertal children 386 or found a 

predominant effect of obesity on adipokine levels 389. The exact pathogenesis and long-
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term consequences of early perturbations in metabolism by pediatric OSA warrant 

urgent research efforts.  

 

7.1 Effects of treatment of pediatric OSA 

 Therapeutic interventions in children should be aimed at correcting both sleep 

apnea and concomitant obesity if present. There is no agreement on the criteria to define 

the success rate of treatment in pediatric OSA, making it hard to compare the results of 

available studies 390.   

 The results of adenotonsillectomy (AT) have been conflicting. AT carries a low 

success rate 25. In addition, BMI often increases post-operatively, due to increased 

appetite, decreased nocturnal energy expenditure, and decreased total motor activity 391. 

One study using a pre-/post surgery design to assess the effect of OSA on IR in non-

obese and obese children found that OSA was clearly associated with IR in obese 

children only; plasma lipids markedly decrease in obese patients with resolution of 

OSA, while they showed a minor improvement in patients with residual OSA post-

surgery 260. In another study, lipid profiles, CRP, and Apo-lipoprotein B significantly 

improved after adenotonsillectomy in both obese and non-obese children 388. Other 

studies failed to show any effect of AT on fasting insulin or the HOMA index, or found 

that the metabolic profile worsened after surgery due to increased BMI 392, or were 

insufficiently powered to detect differences between subsets of obese children after 

surgery 393. As for liver dysfunction, serum aminotransferase levels decreased in the 

majority of obese OSA children after adenotonsillectomy 241, but further study is needed 

to confirm a cause-effect relationship between OSA and NAFLD 394.   
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 Experience with CPAP in children is limited, and the problem of long-term 

compliance to treatment may be as crucial as in adults. A single study in children found 

a slight decrease in leptin after CPAP treatment, while insulin sensitivity, BMI or 

norepinephrine levels were unaffected 395. Weight loss is a promising alternative 390, but 

long-term compliance to weight loss is a relevant problem also in children.  

   

8. FUTURE RESEARCH DIRECTIONS 

 Several important areas can be identified for future research. We have started to 

understand some mechanisms by which OSA may worsen metabolism, and studies in 

mice have provided a large amount of data on the effects of chronic IH. However, the 

effects of decreased or disrupted sleep on metabolism remain incompletely defined in 

both obesity and OSA. Interestingly, sleep loss may not only promote weight gain, but 

could also diminish fat loss during low-calorie diet, as recently found in obese humans 

298.  

 Studies on the effects of hypoxia on adipocyte function face some 

methodological problem, since in vitro exposure to room air actually represents a 

condition of hyperoxia compared to the value of tissue pO2 measured in live animals 

113,114 and humans 111. Testing the effects of IH in vitro on adipose tissue is problematic, 

due to the technical difficulty of controlling the rate of gas diffusion in cell cultures. 

This problem can be partly overcome by reducing the number of IH cycles per minute, 

in order to obtain measurable oscillations in O2 levels in the supernatant to which the 

cells are exposed.  
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 Knowledge on adipose tissue function in OSA  patients is still insufficient, and 

the biology of adipocytes from different fat depots (visceral, subcutaneous) in obese and 

non-obese OSA patients has not been studied. The pattern of adipokines in OSA is 

incompletely defined, as well as their interaction with inflammation, which plays such 

an important role in both OSA and obesity. 

 The role of OSA and obesity in causing metabolic abnormalities in children is 

incompletely understood. Given the partial success of adenotonsillectomy, sleep studies 

and metabolic assessment should be performed in children after surgery in order to 

evaluate the need for further treatment. Randomized controlled studies are needed to 

identify the best therapeutic strategy in pediatric OSA according to the specific OSA 

phenotype. In addition, longitudinal studies to explore the long-term consequences of 

OSA in children are warranted. 

 A comprehensive approach, aimed at abolishing OSA but also at attaining long-

term reduction in body weight, is desirable in both adults and children with OSA. In 

patients undergoing bariatric surgery, resolution or improvement of obesity improved 

OSA, especially in men. However, patients undergoing bariatric surgery may not be 

representative of the whole OSA population because of usual predominance of morbidly 

obese females. Bariatric surgery has provided important data on liver function in OSA, 

and remains a good opportunity for metabolic studies at the time of the intervention. 

Moreover, liver biopsies are easily obtained at the time of bariatric surgery, but 

collecting them during follow-up or in patients treated with CPAP is ethically 

problematic. Hopefully, improved noninvasive means of diagnosis of NAFLD will help 

to improve liver assessment in OSA patients.   
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 From a clinical point of view, new models of integrated care, possibly in the 

same center, are needed for treatment of obese OSA patients. A multidisciplinary 

approach seems necessary for both adult and pediatric patients in order to provide 

effective treatment and prevent metabolic and cardiovascular consequences of both 

obesity and OSA.  
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Table 2. Studies on liver dysfunction, obesity and OSA 
 

Study Patients Methods OSA Results 
Singh et al, 2005 224 190 NAFLD 

patients 
AST/ALT,liver 
biopsy, modified 
Berlin Questionnaire 

46% of the sample reported 
symptoms of OSA 

No difference in liver damage between pts with 
and without OSA 

Jouët et al, 2007 236 62 morbidly 
obese (54 F) 

AST/ALT, liver 
biopsy 

OSA in 84.7% of the sample Male sex and OSA increased the risk for 
increased AST/ALT. NASH and fibrosis not 
different between OSA and non-OSA 

Kallwitz et al, 2007 
233 

85 morbidly 
obese (61 F) 

AST/ALT, liver 
biopsy 

AHI≥15 in 51% of the 
sample 

Increased ALT in OSA pts; OSA tended to be 
associated with progressive liver disease 

Mishra et al, 2008 
234 

101 morbidly 
obese 

AST/ALT, liver 
biopsy 

OSA in 83.5% of NASH+ 
and 72.7% of NASH- (NS) 

Higher liver enzymes and OSA severity in 
NASH+ compared to NASH- pts 

Campos et al, 2008 
235 

200 morbidly 
obese (168 F) 

Liver biopsy OSA diagnosed in 13.5% of 
the sample 

OSA increased the risk of NASH (OR 4.0, CI 
1.3-12.2) 

Polotsky et al, 2009 
232 

90 morbidly 
obese (75 F) 

AST/ALT, liver 
biopsy 

RDI>5 in 81.1% of the 
sample; RDI 15±29 

NASH in pts with severe O2 desaturation 
during sleep 

Daltro et al, 2010237 40 morbidly 
obese pts (26 
F) 

AST/ALT, liver 
biopsy 

AHI>5 in 80% of the 
sample; median AHI 11 (6-
30) 

No significant association between OSA and 
liver enzymes or  NASH  

Tanné et al, 2005 238 163 
suspected 
OSA 

AST/ALT, liver 
biopsy 

Moderate-severe OSA in 
79% of the sample 

Liver enzymes associated with BMI and OSA 
(OR 5.9, CI 1.2-29.2). NASH more severe in 
pts with AHI>50, but insulin resistance was a 
stronger factor 

Tatsumi et al, 2005 
239 

83 OSA, 41 
controls 

Serum type III 
procollagen (latent 
NASH), CT 
liver/spleen ratio 

Mean AHI 32.5 Non-obese pts (mean BMI 25.6 kg/m2). 
Correlation between serum type III procollagen 
(marker of fibrosis) and O2 desaturation during 
sleep. Hepatic steatosis unaffected by OSA  

Norman et al, 2008 
240 

109 OSA AST/ALT Mean AHI 53 AST/ALT correlated with nocturnal hypoxemia 

Chin et al, 2003 338 40 obese 
OSA 

AST/ALT Mean AHI 57 Increase in AST/ALT from evening to morning 
in untreated pts, blunted by acute and 
prolonged CPAP treatment 

Kohler et al, 2009 94 OSA AST/ALT Mean ODI 42.4 Randomized controlled trial. Decrease in AST 
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339 after both therapeutic and subtherapeutic CPAP 
Kheirandish-Gozal 
et al, 2008 241 

518 snoring 
children, 142 
overweight/o
bese  

AST/ALT OSA in 66.2% of the sample Increased liver enzymes (>40 U/L) in obese 
OSA children, associated with insulin 
resistance and hyperlipidemia. Improvement 
after treatment 

Verhulst et al, 2009 
242 

75 children & 
adolescents  

AST/ALT OSA in 44% of the sample Increased liver enzymes associated with RDI 
and hypoxemia during sleep 

 

Abbreviations: F: females; NAFLD: non alcoholic fatty liver disease; NASH: non alcoholic statohepatitis; AST: aspartate aminotransferase; ALT: 

alanine aminotransferase; AHI: apnea hypopnea index; RDI: respiratory disturbance index, ODI: oxygen desaturation index; OR: odds ratio, CI: 

confidence interval; BMI: body mass index; CT: computerized tomography.



Figure Legends 

Figure 1. Schematic picture summarizing the functional consequences of visceral obesity in 

adipocyte, skeletal muscle, liver and vessel wall. The effects of OSA or intermittent hypoxia on the 

same variables are also summarized. See text for further details. 

 

 


