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Abstract          

Background Studies using genetic isolates with limited genetic variation may be useful in 

COPD genetics, but are thus far lacking. We studied associations between Single 

Nucleotide Polymorphisms (SNPs) in candidate genes and lung function in COPD in a 

genetic isolate.  

Methods In 91 subjects with COPD GOLD stage ≥ I, members of an extended pedigree 

including 6,175 people from the Genetic Research in Isolated Population study, we 

analyzed 32 SNPs in 13 candidate genes: ADAM33, TGFβ1, MMP1, MMP2, MMP9, 

MMP12, TIMP1, SFTPA1, SFTPA2, SFTPB, SFTPD, GSTP1 and HMOX1, and studied 

their relation to FEV1, IVC, and FEV1/IVC levels using restricted maximum likelihood linear 

mixed modeling, accounting for pedigree structure. We replicated significant associations 

in the general Vlagtwedde/Vlaardingen study. 

Results Six SNPs in TGFB1, SFTPA1, SFTPA2 and SFTPD were significantly associated 

with FEV1/IVC in subjects with COPD GOLD stage ≥ I. Two SNPs in TGFB1 (C-509T and 

Leu10Pro), Leu50Val in SFTPA1, and Ala160Thr in SFTPD showed suggestive evidence 

of association with FEV1/IVC in subjects with GOLD stage ≥ II. The TGFB1 associations 

were replicated in GOLD stage ≥ II patients from the Vlagtwedde/Vlaardingen population, 

with similar effect sizes. 

Discussion We show that a genetic isolate can be used to determine genetics of lung 

function, which can be replicated in COPD patients from an independent population.  
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Introduction          

Chronic Obstructive Pulmonary Disease (COPD) is the third cause of death worldwide and 

is expected to increase in prevalence in the forthcoming decades [1,2]. The disease has a 

large personal, societal, and economic impact. COPD is characterized by chronic airway 

inflammation, airway remodeling, and airflow limitation that is not fully reversible. Since not 

all smokers develop COPD, genetic susceptibility has to play a role in development of this 

disease, in addition to environmental factors. The genetic determinants for COPD are 

difficult to study, since COPD is a disease that becomes clinically manifest only at later 

ages, when parents of COPD patients have already died, and their children are likely to 

young to manifest airway obstruction. This limits the option to perform family based genetic 

research. Moreover, published studies frequently use various definitions of disease status, 

which makes it difficult to compare their results. Therefore, it makes sense to choose a 

robust phenotype to define COPD like the level of lung function, which can be more easily 

compared between studies. Moreover, a low level of lung function is a predictor for 

mortality from COPD [3-5].  

Another complicating factor in studies on genetics of COPD is that COPD is considered a 

complex genetic trait, i.e. multiple, possibly interacting, genetic and environmental factors 

are involved. Therefore it has advantages to try and identify risk genes in populations that 

are relatively genetically and environmentally homogeneous, such as genetically isolated 

populations. Due to the small number of founders and drift in genetically isolated 

populations, the genetic variation is reduced 6. However, these processes raise the 

question whether findings can be extrapolated to the general population. Previous 

simulation studies suggest that this is the case for common variants with a frequency of 

>1% [6], but no empirical evidence is available.  

We conducted a candidate gene study for level of airflow limitation in patients with COPD 

who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) 

study that is conducted in a young genetically isolated population from the southwestern 



 
4 

part of the Netherlands. All patients were genotyped using 32 Single Nucleotide 

Polymorphisms (SNPs) in 13 candidate genes for COPD, chosen based on their 

previously published association with either COPD, level of lung function, or lung function 

decline as reported in the general population. Extensive genealogy information was 

collected resulting in an extremely large and complex pedigree of 6,175 members. Finally, 

we studied 1390 Caucasians from the general Dutch population, including 351 patients 

with COPD, to establish whether our findings could be replicated in the general population. 

In both studies, we investigated whether the severity of the disease, as reflected by lung 

function reduction, is genetically influenced in established COPD. 
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Methods           

Study populations   

Our study is part of the GRIP program [7,8]. GRIP is based in a recent genetically isolated 

population from the southwestern of the Netherlands, which was founded in the middle of 

the 18th century by approximately 150 individuals and was genetically isolated until the last 

few decades. The population now includes approximately 20,000 inhabitants in 8 adjacent 

communities. GRIP participants are generally related via multiple lines of descent and are 

inbred via multiple consanguineous loops [9,10]. 

We invited subjects with general practitioner’s diagnosed COPD to the research center to 

undergo spirometry and complete a questionnaire [11]. Spirometry was performed by 

trained pulmonary research technicians using a Pneumotagograph (Viasys, formerly 

Jaeger Spirometer system). Predicted values for FEV1 were calculated using adjusted 

Quanjer-equations for Caucasian subjects [12]. We isolated DNA from blood using 

Puregene® DNA Purification Kits (Gentra, Inc, Minneapolis, USA). All participants gave 

written informed consent.  

To verify the findings from GRIP in the general population, we used cross-sectional data 

from the general population-based Vlagtwedde/Vlaardingen cohort. Questionnaires, 

spirometry and DNA were collected [13,14]. For this study, we selected 351 subjects 

according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria 

with GOLD stage ≥ I COPD at the last 1989/1990 survey, of whom 167 had GOLD stage ≥ 

II [15].  

 

Genotyping 

We have genotyped SNPs in candidate genes for lung function and COPD, based on their 

previously published significant associations (table 1). The selected SNPs were either the 

most significant SNPs in previous studies, tagging SNPs for the gene, or SNPs with a 

known functional effect on gene expression or function. Genotyping was performed using 
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Applied Biosystems TaqMan® SNP Genotyping Assays (Nieuwekerk aan de IJssel, The 

Netherlands). Sequences of primers and probes are available on request. 

 

 

Statistical analysis 

To analyze pedigree data, we used Measured Genotype (MG) approach [16], which 

models quantitative traits as 
ii

j
jijii eGckgy ++++= ∑βµ  

where yi: the phenotype of the i-th individual, g: the vector of genotypes at the marker 

under study, k: is the marker genotype effect, cij: the value of the j-th covariate or fixed 

effect for the individual i, βj: an estimate of the j-th fixed effect or covariate, and Gi and ei 

are random additive polygenic and residual effects, respectively. The random effects are 

assumed to follow multivariate normal distribution with mean zero. The variance for the 

polygenic effects is defined as ΦσG
2, where Φ is the relationship matrix and σG

2 the 

additive genetic variance due to polygenes. For the residual random effects, the variance 

is defined as Iσe
2, where I is the identity matrix and σe

2 the residual variance.  

Because the pedigree under analyses was very large, we used fast GRAMMAR 

approximation to the full MG approach [17]. The GRAMMAR consist of a fast though 

conservative test at screening stage, followed up with full MG analysis of polymorphisms 

which pass the relaxed (P<0.1) screening significance threshold. All analysis involving 

pedigree were performed using ASReml 

v2.0 [18]– a package for linear mixed model analysis using restricted maximum likelihood. 

 In the Vlagtwedde/Vlaardingen population, we tested significant associations using linear 

regression analyses. All analyses were adjusted for age, height and sex. 
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Results      

GRIP study population 

We ascertained 157 individuals who were diagnosed with COPD by their general 

practitioners. Spirometry measures confirmed COPD in 91 subjects, i.e. subjects with 

COPD GOLD stage ≥ I (defined as FEV1/IVC<70%) [15]. The rest of the subjects could not 

be defined as having COPD according to their spirometry and were therefore excluded 

from the analyses.  We determined the familial relationship of these 91 subjects in the 

larger GRIP study database. This resulted in a large extended pedigree structure of 6,175 

members. The characteristics of the GRIP COPD population and the 

Vlagtwedde/Vlaardingen replication cohort are shown in Table 2.  

 

Association of genes with lung function parameters in GRIP and replication in 

Vlagtweddde/Vlaardingen 

We first analyzed the effects of SNPs in the studied genes on FEV1 % predicted, IVC, and 

FEV1/IVC in the 91 subjects with COPD GOLD stage ≥ I. None of the SNPs was 

associated with FEV1 % predicted or IVC. Six SNPs in TGFB1, SFTPA1, SFTPA2 and 

SFTPD were significantly associated with FEV1/IVC (table 3). None of these associations 

were replicated in subjects from the Vlagtwedde/Vlaardingen cohort with COPD GOLD 

stage ≥ I (data not shown).   

 

We additionally analyzed the effects of SNPs in the studied genes using a more stringent 

definition of COPD, namely GOLD stage ≥ II (defined as FEV1/IVC<70% and FEV1%pred 

<80). This resulted for the GRIP population in 67 cases. In these subjects, two SNPs in 

TGFB1 (C-509T and Leu10Pro), Leu50Val in SFTPA1, and Ala160Thr in SFTPD showed 

suggestive evidence of association with FEV1/IVC (p<0.10, table 3). The TGFB1 C-509T 

and Leu10Pro associations were replicated in GOLD ≥ II subjects from the 

Vlagtwedde/Vlaardingen population (n=167), with similar effect sizes (see table 3). 
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Discussion          

Our study is the first to use a genetically isolated population to analyze genetic effects on 

level of lung function in COPD. Interestingly, we found significant effects of SNPs in COPD 

candidate genes on the severity of COPD, assessed by lung function in subjects with 

COPD even though our study population is small.  Our results show that levels of 

FEV1/IVC, measures of airway obstruction, are genetically influenced in established 

COPD. This means that even within patients with phenotypical COPD, we can identify 

genotypes that are associated with severity of the disease. This is of clinical importance 

since low lung function levels have been shown to predict mortality of COPD not only in 

the general population, but also within COPD patients [3-5].  

The TGFβ1 SNPs that were associated with FEV1/IVC in our populations have 

previously been associated with development of COPD or with lower levels of FEV1 and 

FEV1/VC in several [19-21], but not all previous studies [14,22,23]. Our results (in both the 

genetically isolated and general population) thus confirm the former studies that implicate 

a role of TGFβ1 in the severity of airflow limitation. The SFTPA1 and SFTPD SNPs have 

been associated with COPD previously [24,25]. We now for the first time show that these 

SNPs may also play a role in severity of COPD. This is plausible, since surfactant proteins 

decrease surface tension at the air–liquid interface and, therefore, reduce the tendency of 

alveoli to collapse during expiration. The latter contributes to the severity of airway 

obstruction, as measured by FEV1/IVC.  

We found no significant associations of ADAM33, MMP1, MMP2, MMP9, MMP12, 

TIMP1, SFTPB, GSTP1 and HMOX1 with level of lung function in COPD patients. This 

does not imply that these genes do not play a role in COPD whatsoever. So far, no studies 

have analyzed genetic effects on the severity of airway obstruction within patients with 

established COPD. Our study shows that SNPs in TGFβ1, SFTPA1, and SFTPD may be 

important in progression of COPD, whereas the SNPs in other genes, i.e. ADAM33, 
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MMP1, MMP2, MMP9, MMP12, TIMP1, GSTP1 and HMOX1, may simply constitute genes 

that are important in development of COPD. 

One important advantage of testing genes in a genetically isolated population is that 

it provides the opportunity to find genes associated with disease in a relatively small 

sample size due to increased homogeneity of the population, as recently demonstrated for 

multiple sclerosis [26]. Thus for a lower cost and effort, one can test many genes as to 

their significance in contributing to disease severity, which subsequently can then be 

replicated in a larger sample of the general population. The most important requirement for 

such studies is that the genetic isolate is representative for the general population or 

disease-specific study populations. This is indeed the case since we showed that in 

selected subjects with COPD from the general population, we can replicate the 

associations found in the young genetic isolate for a substantial part. Thus, we are able to 

translate findings in a genetic isolate to the general population, but correct and comparable 

phenotyping of the study populations is still crucial to replicate association between 

populations.  

We were unable to replicate results of any of the SNPs in subjects with GOLD stage ≥ I 

from the Vlagtwedde/Vlaardingen population. When looking more closely, it appeared that 

the GRIP COPD patients with GOLD stage ≥ I had more severe COPD, i.e. lower lung 

function and more symptoms, than COPD patients with similar stage of disease in the 

Vlagtwedde/Vlaardingen population. A more strict definition of COPD (GOLD stage ≥ II) in 

Vlagtwedde/Vlaardingen and GRIP gives a phenotypically better comparison. Indeed, 

when analyzing subjects with subjects with GOLD ≥ II from Vlagtwedde/Vlaardingen 

population, SNPs TGFβ1 C-509T and TGFβ1 Leu10Pro were significantly associated with 

FEV1/IVC, as they were in the GRIP GOLD ≥ II COPD patients.  

Since the percentage of subjects with amongst other chronic cough was different in both 

cohorts, we re-ran our analyses with straight forward linear regression models with chronic 

cough in the model to check for stability of the effect estimates. Analyses on FEV1/IVC in 



 
10 

the GRIP GOLD stage ≥ II population, taking for example chronic cough into account, 

resulted in similar regression estimates for the SNPs in TGFβ1 and SFTPA1, but smaller 

p-values and slightly higher explained variances, while the suggestive associations of the 

other SNPs disappeared. Additional adjustment for chronic cough in the 

Vlagtwedde/Vlaardingen GOLD stage ≥ II population resulted in similar significant 

regression estimates for the SNPs in TGFβ1 with FEV1/IVC. Therefore, our effect 

estimates appear to be stable within both GOLD stage ≥ II groups, irrespective of 

differences in characteristics between the GRIP and Vlagtwedde/Vlaardingen GOLD stage 

≥ II population.  

Several explanations may exist for the lack of replication for SFTPA1 and SFTPD 

(Met11Thr) SNPs with FEV1/IVC in the Vlagtwedde/Vlaardingen COPD GOLD stage ≥ II. 

First, the original GRIP findings on these genes could be false-positive. Indeed, multiple 

(though correlated) outcomes and SNPs were studied in GRIP. Another, more biological, 

explanation for the lack of replication may be that the prevalence of certain alleles in 

genetically isolated populations differs from a general population as a result of genetic drift 

and founder effects. Indeed, the genotype frequencies for the SFTPA1 Leu50Val SNP 

were significantly different between the two populations, but not for the other SNPs (see 

table E1). A third explanation may be that differences exist in characteristics between the 

study populations. The GRIP population had more severe COPD and was slightly older 

than the Vlagtwedde/ Vlaardingen COPD population. 

In addition, differences in environment may affect the lack of replication of the SFTP 

genes. The genetically isolated population shares the same environment, similar socio-

economic status, and the same general practitioners. We cannot rule out that the COPD 

patients in GRIP have a higher prevalence of chronic bronchitis and airway disease 

whereas the airway obstruction in the Vlagtwedde/Vlaardingen population may have been 

caused by emphysema [27-29]. Further research is needed to separately assess these 
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phenomena, since CT scans are necessary, which we unfortunately do not have of these 

patients. 

In conclusion, this study provides two important messages. Firstly, we found 

significant effects of SNPs on the severity of COPD, i.e. level of lung function in patients 

with established COPD in a relatively small genetically isolated population with a large 

pedigree structure. Secondly, we replicated two of these associations in COPD patients 

selected from the general population on the condition that they were phenotypically similar. 

These findings are important since more severe airway obstruction is associated with 

progression and mortality of COPD. Future studies using this genetic isolate should focus 

on progression of COPD, since this population seems to be highly suitable to determine 

genetic risk factors for severity of airway obstruction in established COPD that can be 

translated to the general population. 
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Table E1: Genotype frequencies of the significant SNPs in the GRIP GOLD ≥  II 

population compared to the genotype frequencies in the Vlagtwedde/Vlaardingen 

GOLD ≥  II population  

SNP and 

genotype 

GRIP 

N=67 
N (%) 

Vla/Vla 

N=167 
N (%) 

P value 

AA 12 (17.9) 27 (16.5) 0. 690 

AG 31 (46.3) 86 (52.4)  

ADAM33 

ST+5 

GG 24 (35.8) 51 (31.1)  

GG 29 (43.3) 94 (58.0) 0.051 

GA 30 (44.8) 60 (37.0)  

TGFβ1  

C-509T 

AA 8 (11.9) 8 (4.9)  

AA 22 (34.9) 68 (45.3) 0.368 

AG 33 (52.4) 65 (43.3)  

TGFβ1  

Leu10Pro 

GG 8 (12.7) 17 (11.3)  

GG 45 (73.8) 123 (79.9) 0.045 
GC 15 (24.6) 20 (13.0)  

SFTPA1 

Leu50Val 

CC 1 (3.1) 11 (7.1)  

GG 42 (62.7) 117 (72.7) 0.242 

GC 22 (32.8) 41 (25.5)  

SFTPA2 

Pro91Ala 

CC 3 (4.5) 3 (1.9)  

TT 22 (34.4) 44 (27.5) 0.522 

TC 29 (45.3) 85 53.1)  

SFTPD 

Met11Thr 

CC 13 (20.3) 31 (19.4)  

AA 26 (40.6) 54 (34.6) 0.484 

AG 30 (46.9) 73 (46.8)  

SFTPD 

Ala160Thr 

GG 8 (12.5) 29 (18.6)  

Abbreviations: GRIP Genetic Research in Isolated populations; Vla/Vla Vlagtwedde/Vlaardingen; ADAM33 A 

Disintegrin and Metalloprotease 33; TGFβ1 Transforming Growth Factor β1; SFTP Surfactant Protein 

 

  


