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Abstract 
Airway disease in childhood comprises a heterogeneous group of disorders. Attempts to 
distinguish different phenotypes have generally considered few disease dimensions. This 
study examines phenotypes of childhood wheeze and chronic cough, by fitting a statistical 
model to data representing multiple disease dimensions. 
From a population-based, longitudinal cohort study of 1650 preschool children, 319 with 
parent-reported wheeze or chronic cough were included. Phenotypes were identified by latent 
class analysis using data on symptoms, skin-prick tests, lung function and airway 
responsiveness from two preschool surveys. These phenotypes were then compared with 
respect to outcome at school age. 
The model distinguished three phenotypes of wheeze and two phenotypes of chronic cough. 
Subsequent wheeze, chronic cough and inhaler use at school age differed clearly between the 
five phenotypes. The wheeze phenotypes shared features with previously described entities 
and partly reconciled discrepancies between existing sets of phenotype labels. 
This novel multidimensional approach has the potential to identify clinically relevant 
phenotypes not only in paediatric disorders but also in adult obstructive airway diseases, 
where phenotype definition is an equally important issue. 



   

Introduction 
It is widely accepted that childhood asthma comprises several distinct disorders, characterized 
by the common symptom of wheeze [1-4]. Distinguishing between these disorders is 
clinically important since aetiology, pathophysiology, potential for therapy and outcome may 
differ [1, 5-7]. Similarly, it has been emphasised that, although some children with chronic 
cough might suffer from a variant form of asthma, “lumping” together all chronic coughers 
under the term “cough variant asthma” is probably wrong [8]. 
Obstructive airway diseases clearly have multiple dimensions which involve atopy, disordered 
lung function, airway responsiveness and a variety of symptoms. Despite this, traditional 
phenotype definitions have used simple distinctions, such as a clinical classification into 
“exclusive viral wheeze” triggered only by colds and “multiple trigger wheeze” triggered also 
by other factors [9], or a retrospective classification by symptom history into “early transient”, 
“persistent” and “late-onset” wheeze [2, 3, 7]. Because they are limited to single dimensions, 
such phenotype definitions embody an arbitrary element and may not properly reflect 
underlying disease processes. Furthermore, it is unclear how the different sets of phenotype 
labels relate to each other and whether they identify similar entities. For instance, is 
“exclusive viral wheeze” the same condition as “early transient wheeze”? We still lack an 
agreed system of classification that appropriately reflects underlying disease processes and, 
potentially, therapeutic responses. It has been proposed that statistical methods which can 
account for multiple dimensions of airway disease may facilitate the identification of relevant 
phenotypes [10]. 
Latent class analysis (LCA) [11, 12] is a statistical method developed in the social sciences 
which is used to identify distinct subsets (classes) of a population. The underlying classes are 
not observable and must be determined from the observed data. LCA has recently been used 
in medical research to identify disease phenotypes [13, 14]. The aims of the present study 
were (i) to apply LCA to a multivariate dataset combining symptoms and physiological 
measurements in order to identify and describe phenotypes of wheeze and cough in 
childhood, and (ii) to explore the validity of the resultant phenotypes by assessing how well 
they predicted future outcomes. The emphasis of the present paper is on the potential of this 
approach to identify phenotypes of obstructive airway disease. 
 
Materials and Methods 
Subjects and study design 
In a population-based cohort study of 1650 white children recruited in 1990 at the age of 0 to 
5 years in Leicestershire, UK [15-20], parents completed postal questionnaires on respiratory 
symptoms, exposures and socio-demographic characteristics in 1990, 1998 and 2003. 
Between 1992 and 94, a nested sample of 795 children was invited for physiological 
measurements and interviews [17, 18], including all with parent-reported wheeze (n=222) or 
chronic cough (cough occurring apart from colds n=226) in 1990 and a random sample of 
previously asymptomatic children (n=347). The study was approved by the Leicester Health 
Authority Committee on the Ethics of Clinical Research Investigation. 
Identification of phenotypes was based on data from the first two surveys (1990 and 1992-4). 
From among the 488 respondents to the second survey (1992-4) we analyzed data from all 
those with a positive response in either survey (1990 or 1992-4) to one or both of the 
questions: “Has your child ever had attacks of wheezing?” and “Does he/she usually have a 
cough apart from colds?” (n=319) (Figure 1). 
In a next step we compared prognosis between identified phenotypes, using data on current 
(i.e. previous 12-month) wheeze, frequent wheeze, bronchodilator use and cough without 
colds from two recent surveys, 1998 and 2003, when the children were aged 8-13 and 13-18 
years respectively. Children who were asymptomatic in the first two surveys (n=169) served 
as a control group. 



   

 
Physiological measurements 
Physiological measurements included in this analysis were age- and height-standardized z-
scores [21] of the pre-bronchodilator forced expiratory volume in 0.5s (FEV0.5), bronchial 
responsiveness (provoking concentration of methacholine causing a 20% decrease in 
transcutaneous oxygen tension (PC20tc-PO2)) [22], and atopy assessed by skin prick testing.  
Subjects responding to one or more of four aeroallergens (cat hair, dog danders, 
Dermatophagoides pteronyssinus and mixed grass pollen) were designated atopic. For more 
details see online supplementary material. 
 
Statistical analysis 
To identify phenotypes, LCA was applied to a set of variables measured on the sample of 319 
children during the first two surveys. LCA assumes that the population is composed of 
subpopulations (latent classes), each having its distinctive distribution of the included 
variables [11]. If these variables represent disease manifestations the latent classes can be 
interpreted as clinical phenotypes. Application of LCA involves some prior decisions: (a) 
choosing the variables and (b) the number of latent classes to be included in the model. When 
choosing which variables to include there has to be a balance between using all potentially 
relevant information and the need to limit the number of parameters in the model. In the 
present study all parent-reported symptom data relating to cough and wheeze from the first 
two surveys and all measurements of atopy, lung function and bronchial responsiveness were 
considered for inclusion. Multiple correspondence analysis [23] was then used to make a 
narrower selection. In addition we included the variables age and sex (for a list of all included 
variables see tables 1 and 2). In order to choose the appropriate number of latent classes the 
model was repeatedly fitted with the number of classes increasing stepwise from 1 (model 1) 
to 7 (model 7). These models were then compared using bootstrapped p-values for the 
likelihood ratio test and the Bayesian information criterion [11]. 
The model was fitted by maximum likelihood estimation using Multimix, a Fortran program 
designed to fit latent class models including both continuous and categorical variables [24]. 
The variables FEV0.5 and log transformed tc-PO2 [25] were treated as continuous with a 
normal distribution and all other variables as categorical. We adapted the program to deal 
with missing data [26] and conditional questions (such as questions on shortness of breath, or 
seasonality of symptoms which were asked only to those children reporting wheeze ever). For 
more details on the modelling approach see the online supplementary material. 
LCA allows computing the probability of belonging to a particular phenotype given the 
observed features of a subject. As is common practice in LCA [11], each child in the sample 
was assigned to the phenotype for which it had the highest membership probability. We refer 
to groups of children assigned in this way to different phenotypes as “phenotype clusters”. 
Two-sided Fisher’s exact tests were used to test associations between phenotype clusters and 
prognostic endpoints. These were computed using Stata statistical software (version 8.2, 
STATA Corporation, College Station, TX). A Bonferroni-corrected significance level was 
used to account for multiple pair-wise testing. 
 
Results 
Sample characteristics 
The sample used for phenotype definition (n = 319) consisted of 189 (59%) children with 
wheeze ever reported in 1990 and/or in 1992-4 and 130 (41%) children with cough apart from 
colds reported in at least one survey, but no wheeze ever. The sample contained 160 (50%) 
girls and the median age (range) was 3.3 (0.3-5.4) years in 1990 and 6.3 (4.1 to 8.8) years in 
1992-4. The healthy comparison group consisted of 169 asymptomatic children. 
 



   

Phenotype identification 
The two criteria which were applied to determine the number of phenotypes did not agree: the 
bootstrapped p-values for the LR test indicated five phenotypes (model 5) while the BIC 
preferred only two (model 2). Because this method is explorative and has the potential to 
reveal new phenotypes we chose to present model 5 (tables 1 and 2), knowing that the 
heterogeneity in the data might sufficiently be represented by fewer phenotypes (detailed 
results for the models with 2-5 phenotypes are reported in tables E2-E5 in the online 
supplementary material). The main characteristics of the five phenotypes are summarized 
below (details in tables 1 and 2). To simplify the discussion, each phenotype was given a 
summary label describing its most pertinent characteristics. 
Phenotype A (“persistent cough”): Children with this phenotype typically suffered from 
cough apart from colds at both surveys. Wheeze ever was more common than in phenotype B 
but considerably less common than in phenotypes C, D and E. FEV0.5 values tended to be 
slightly lower and bronchial responsiveness greater than in asymptomatic children. 
Phenotype B (“transient cough”): Cough apart from colds occurred only in the first survey 
and wheeze ever was rarely reported. FEV0.5 and bronchial responsiveness were comparable 
with asymptomatic children. 
Phenotype C (“atopic persistent wheeze”): Attacks of wheeze were frequent in both surveys. 
Attacks occurred with and without colds and were commonly accompanied by shortness of 
breath. For almost a third of the children with this phenotype summer was the season with 
more frequent attacks in the second survey. Cough apart from colds and being woken at night 
by cough was common.  Sensitization to at least one allergen was likely, FEV0.5 values were 
typically lower and bronchial responsiveness greater than in asymptomatic children. 
Phenotype D (“non-atopic persistent wheeze”): Attacks of wheeze were likely in both surveys 
though not as frequent as in phenotype C. Attacks tended to be accompanied by shortness of 
breath and occurred with and without colds. They were generally worse at night and, in the 
second survey, were more common in winter. Atopic sensitization was rare, FEV0.5 similar 
and bronchial responsiveness greater than in asymptomatic children. 
Phenotype E (“transient viral wheeze”): Attacks of wheeze tended to occur prior to the first 
survey or, if reported at the first survey, were infrequent. Attacks had subsided by the second 
survey. Wheeze tended to occur only with colds. FEV0.5 was similar to that in asymptomatic 
children, bronchial responsiveness was slightly greater. 
For each child in the sample membership probabilities were computed for each of the 
identified phenotypes. Children were then assigned to the phenotypes for which they had 
highest probability (phenotype clusters). For 271 children (85%) the highest membership 
probability was greater than 0.9 indicating clear membership, while for 9 children (3%) the 
highest membership probability was less than 0.6 indicating more ambiguous membership. 
To investigate the relationship between phenotypes identified in the sequential steps of the 
analysis (models 1-5), we determined the number of children “flowing” from the phenotype 
clusters of a given model into the clusters of the subsequent model with one more phenotype 
(Figure 2). The phenotypes showed a high degree of stability across models.  Children 
grouped to one phenotype at an early stage tended to be grouped together again at later stages. 
Thus four of the phenotypes of our five-phenotype model were essentially distinguished at 
earlier stages (phenotypes A and B by model 4 (clusters 4A and 4B) and phenotypes C and E 
by model 3 (3B and 3C)), with phenotype D appearing as the only “new” phenotype at the 
fifth stage. 
 
Comparing prognosis across identified phenotypes 
At age 8-13 years in 1998 (Figure 3, white columns) the prevalence of current wheeze was 
highest in phenotype cluster C (“atopic persistent wheeze”) (37/52 = 71%), less in phenotype 
cluster D (“non-atopic persistent wheeze”) (14/40 = 35%), followed by A (“persistent cough”) 



   

(21/84 = 25%) and E (“transient viral wheeze”) (8/34 = 24%) and lowest in B (“transient 
cough”) (7/72 = 10%) and in asymptomatics (17/158 = 11%).  A similar pattern was found for 
the outcomes frequent wheeze (≥ 3 attacks) and use of bronchodilators. 
We statistically tested for differences in the prevalence of the 4 prognostic endpoints between 
the phenotype clusters. We were interested in pair-wise comparisons between children with 
persistent cough (A) and asymptomatics and between the two cough phenotypes (A and B) 
because persistent coughers represent a novel group identified by this study (see discussion). 
It is still disputed whether children with chronic cough, or a subgroup of them, have a 
different probability to develop wheeze compared to asymptomatic children. We also tested 
for differences between the two more persistent wheeze phenotypes (C and D). In order to 
limit the problem of multiple testing, we did not perform more pair-wise comparisons. The 
Bonferroni-corrected significance level for these tests was 0.0042 (overall significance level 
divided by number of tests: 0.05/12). The outcomes at 8-13 years (Figure 3, white columns) 
tended to be more prevalent in cluster C than in D with significant differences for current 
wheeze (p=0.001) and for use of bronchodilators (p=0.002).  Prognosis of asthma-related 
outcomes tended to be worse for phenotype cluster A (“persistent cough”) than for phenotype 
cluster B (“transient cough”) and asymptomatics, with significant differences for use of 
bronchodilators (p<0.001 and p=0.001 respectively). Prevalence of cough apart from colds at 
8-13 years was higher in A (44%) than in B (18%; p=0.001) and in asymptomatics (12%; 
p<0.001). 
In 2003, at 13-18 years (Figure 3, grey columns) prognostic differences between phenotype 
clusters remained qualitatively similar for all four outcomes. Marked differences, though not 
significant at the Bonferroni-corrected level, remained between C and D for current wheeze 
(56%; 31%; p=0.038), and inhaler use (65%; 36%; p=0.013). Prevalence of cough apart from 
colds again differed significantly between A (41%) and B (16%; p=0.002). 
 
Discussion 
This paper describes a novel approach to phenotype recognition in children with wheeze and 
cough using latent class analysis (LCA). By applying this method to data on respiratory 
symptoms and physiological measurements from a population-based childhood cohort, we 
identified three wheeze phenotypes and two cough phenotypes. These phenotypes were 
predictive of outcomes at school age and later childhood. What distinguishes these entities 
from previously used phenotypes is that they are derived directly from data, rather than 
defined a priori, and that they account for multiple disease dimensions. 
 
LCA as multidimensional clustering technique 
Historically, clinicians have refined diagnosis by resolving complex diseases into discrete 
clinically useful subsets. These subsets, which we refer to as disease phenotypes, provide a 
way of classifying patients into groups of individuals with similar disease characteristics. In 
this study phenotypes were treated as unknown and were derived from the observed 
heterogeneity in a sample of symptomatic children. The chosen technique, LCA, can be 
interpreted as a form of cluster analysis. It has, however, important advantages over 
algorithmic clustering techniques such as hierarchical or k-means clustering. First, it is based 
on a formal statistical model which can readily accommodate features measured in different 
modes (categorical, continuous or count variables). Second, the algorithm which is typically 
used to fit these models was designed to deal with missing values [27]. These models thus 
meet major challenges of real-life epidemiological and clinical data. Third, the resulting 
clusters are not rigid in the sense that each individual is assigned to just one class. Rather each 
individual can be assigned to various classes with differing probabilities. This soft form of 
classification more closely corresponds to the clinical situation where some patients have 
features common to more than one condition. In our sample, we found that the majority of 



   

children could clearly be classified into one of the phenotypes, that is with a high probability, 
but that for a minority of children there remained some ambiguity. A possible downside of 
our approach is that this method does not directly produce clear-cut diagnostic rules for the 
clinical setting. However, once phenotype definitions obtained by this technique are validated, 
for instance by application of the model to independent datasets, results can be translated into 
simplified diagnostic algorithms in a further stage. 
LCA shares some limitations with other clustering techniques. First, the problem of 
determining the number of classes has not been completely resolved [11]. Different statistical 
criterion can be used to determine the number of classes, but may yield different results, as 
has been the case in our study. Second, some prior decisions need to be made, such as the type 
and number of variables to include. This method therefore also involves some degree of 
subjectivity, though considerably less than a priori phenotype definitions. In the present 
application another multivariate statistical method, multiple correspondence analysis, was 
used to assist variable selection and reduce the risk of subjective choices. The phenotypes 
identified are influenced by the range of data included. It is therefore necessary that all 
dimensions considered to be relevant for phenotype definition are represented by the included 
variables. As long as the same disease dimensions are included, results obtained by applying 
this approach to different cohorts should be comparable, even if the single variables 
representing these disease dimensions might differ (e.g. skin prick tests versus specific IgE 
measurements). In this analysis we have deliberately focused on clinical dimensions - signs, 
symptoms and physiological measurements - that is dimensions related to disease expression 
and not to disease causes. The reason for this was to keep the methodology as simple and 
transparent as possible at this early stage of research. Using appropriate adjustments to the 
statistical model, future applications may extend this approach to include important risk 
factors of wheezing disorders such as smoking. 
The dataset used for this study which was obtained from an ongoing population-based cohort 
had a small sample size and a considerable proportion of missing values (12.8%). These 
problems are typical of clinical or epidemiological data. The dataset thus provided a suitable 
test bed for the new approach. Though only 11% of individuals had complete data for all 
variables, all 319 individuals contributed to the analysis. This highlights the advantage of 
using an estimation procedure which makes best use of all available information in spite of 
missing values. The fact that the response rates at survey 1 (1422/1650 = 86%) and survey 2 
(488/795 = 61%) were not 100% might have induced some selection bias. This will mainly 
have affected the prevalence of identified phenotypes within our sample, but is less likely to 
have influenced the type of phenotypes found. 
A further limitation of our study sample might have been the considerable age spread of the 
children at the time of data collection. The probability of observing certain features such as 
atopy or “wheeze ever” changes naturally with age. We partially accounted for this by 
including age in our model which allowed for a narrower age spread within phenotypes. 
 
Phenotypes of wheeze 
The model distinguished the phenotypes “transient viral wheeze” (phenotype E) related to 
colds and affecting mainly non-atopic children, and “atopic persistent wheeze” (phenotype C) 
associated with multiple triggers and atopy. This suggests that the previously proposed 
categorizations ‘transient’ and ‘persistent wheeze’ [2, 3, 28], and ‘viral’ and ‘multiple trigger 
wheeze’ [9, 29, 30] might reflect a single phenotypic dichotomy. Phenotypes E and C appear 
to reconcile the discrepancies between these two sets of labels. Children with the “atopic 
persistent wheeze” phenotype were mostly atopic, had the highest levels of bronchial 
responsiveness, lowest lung function and poorest prognosis, which agrees with findings from 
other groups [3, 31]. Children with the “transient viral wheeze” phenotype were generally 
non-atopic and had normal lung function. This matches findings from the German Multicentre 



   

Asthma Study [32] but contrasts with reports from Tucson describing impaired lung function 
both in infancy and at early school age in early transient wheezers [3]. 
A third phenotype of wheeze (phenotype D in Fig 2) was labelled “non-atopic persistent 
wheeze” and was characterized by a low rate of atopy, similar to the phenotype labelled “non-
atopic wheeze” by the Tucson group [28, 33]. A low rate of atopy and the winter season 
predominance distinguished this phenotype from the atopy-associated phenotype. It is known 
from experimental studies that a non-atopic form of viral wheeze may persist in mild form 
into adult life [34]. Phenotype D also shares features with what has been described as 
“intrinsic asthma” in adult respiratory medicine [35]. No evidence was found for a distinct 
“late onset” phenotype characterized by wheeze reported only in the second survey [2, 3, 28]. 
The application of LCA to the present dataset therefore provided support for a) the distinction 
between transient and persistent wheeze, recognizing that the former is associated with viral 
infections and the latter with other triggers, and for b) the existence of a third form of wheeze 
which is non-atopic but largely persistent. 
 
Phenotypes of cough 
One of the two cough phenotypes which our model identified (phenotype A) was associated 
with reduced lung function, increased bronchial responsiveness and a significantly higher risk 
of later wheeze compared to asymptomatics and to children belonging to the other cough 
phenotype (Figure 3). The statistical model therefore appears to have identified, within the 
large group of children with non-specific cough, a group which exhibits features of a 
condition called “cough-variant asthma”. It is clear that “lumping” together all children with 
chronic cough under this term leads to an over-diagnosis of asthma [8]. The present 
multidimensional approach might help to single out a subgroup of children who might indeed 
profit from asthma treatment. 
 
Implications for research and clinical practice 
Reliable phenotype definitions are important for research and clinical practice. They are 
useful for describing the natural history of the disease and for studying underlying 
mechanisms and the role of environmental and genetic factors. In the clinical setting, the 
ability to allocate children to phenotypes allows informed counselling of parents and is a 
prerequisite for phenotype-specific treatment [5-7]. More accurate phenotype definitions 
might also help to explain seemingly conflicting results in time trends and international 
prevalence of asthma [20, 36]. 
In all these settings, phenotypes are useful only if they reflect true disease entities. Statistical 
techniques which are designed to detect the structures underlying multivariate data, such as 
LCA, have the potential to identify such phenotypes. But, because these methods are 
exploratory, it is important to validate the resulting phenotypes. In the present study, recent 
outcome data were used to provide support for phenotypes identified from early symptoms 
and physiological measurements. Identifying similar phenotypes using independent data sets 
is an additional necessary step for validating these findings. Further development of this 
approach and application to other cohorts should help increase our understanding of 
phenotypic variability not only in childhood respiratory disorders but also in adult obstructive 
airway diseases, where phenotype definition is an equally important issue [10]. 
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TABLE 1. Objective features in the five phenotypes of chronic cough and wheeze and an 
asymptomatic control group 
Phenotype A B  C  D  E  Asympto-

matic# 

n¶ 97 82 58 47 35  169 
Sex        

Female 0.56 0.52 0.51 0.51 0.27  0.49 
Male 0.44 0.48 0.49 0.49 0.73  0.51 

Age in 1990        
0 to 2 yrs 0.39 0.54 0.30 0.61 0.36  0.51 
3 to 5 yrs 0.61 0.46 0.70 0.39 0.64  0.49 

Skin prick tests        
All negative 0.81 0.84 0.30 0.91 0.78  0.89 
At least one positive 0.19 0.16 0.70 0.09 0.22  0.11 

FEV0.5  (z-scores)+        
Mean -1.59 -1.18 -1.80 -1.47 -1.09  -1.33 
SD 1.41 1.05 1.41 0.57 0.96  1.47 

Bronchial responsiveness (PC20tc-PO2 g/L)§      
Geometric mean 2.42 2.75 1.26 2.32 2.48  3.82 
IQR 1.4-4.1 1.5-5.2 0.61-2.6 1.4-3.9 1.4-4.3  2.7-6.2 

 
Data are probabilities for categorical variables, and means with standard deviations (SD) or 
interquartile ranges (IQR) for continuous variables as estimated by the finite mixture model. 
For example, children with phenotype E had a probability of 22% to have a positive skin prick 
test, while this is only 9% for phenotype D. 
#: Children reporting no cough apart from colds and no wheeze ever in both early surveys 
(1990, 1992-4). These subjects were not included in the sample used for model estimation. 
¶: Number of children assigned to phenotype. 
+: Sex and weight adjusted z-scores [21]. The negative mean score in asymptomatic children 
probably reflects a systematic difference between our sample and the reference population 
which is irrelevant for this analysis. 
§: Values based on antilog transformation of model estimated mean and IQR for log PC20 [25].
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Figure legends: 
Figure 1: Flow diagram of study subjects. Survey 1 took place in 1990 and survey 2, on a 
nested sample, in 1992-4 in conjunction with laboratory studies. 

 
Figure 2: Formation of phenotype clusters as the number of phenotypes in the mixture model 
was increased stepwise. Dark shaded boxes in a given layer represent clusters of children 
corresponding to the disease phenotypes identified by a given model. Models are labelled 
according to the number of phenotypes included in the model. Box widths are proportional to 
numbers of children in the respective clusters. Hatched parallelograms connecting adjacent 



   

layers represent the numbers children (proportional to horizontal width) common to any two 
connected clusters. For each model clusters are labelled #A, #B, etc. from left to right with ‘#’  
representing the number of phenotypes in the model. In the text the phenotypes of model 5 are 
referred to using the letters shown below the figure. 

 
Figure 3: Prognostic outcomes 5 and 10 years later for the five phenotype clusters and an 
asymptomatic control group. Columns represent the prevalence of outcomes at age 8-13 years 
(  ) and 13-18 years (  ). Error bars indicate 95% confidence intervals. P-values (two sided 
Fisher’s exact test) are shown for certain pair-wise comparisons of outcomes at 8-13 years. 
Significant values at the Bonferroni-corrected α level of 0.0042 are marked with an asterisk. 
Phenotypes were subjectively assigned labels based on their most important characteristics. 



   

 


