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Abstract 
 
Background: BIBF1000 is a small molecule inhibitor targeting the receptor kinases 

of PDGF, bFGF and VEGF, which have known roles in the pathogenesis of 

pulmonary fibrosis. 

 

Methods: The anti-fibrotic potential of BIBF1000 was determined in a rat model of 

bleomycin-induced lung fibrosis and in an ex vivo fibroblast differentiation assay. 

Rats exposed to a single intra-tracheal injection of bleomycin were treated with 

BIBF1000 starting 10 days after bleomycin administration. To gauge for anti-fibrotic 

activity, collagen deposition and pro-fibrotic growth factor gene expression was 

analyzed in isolated lungs. Furthermore, the activity of BIBF1000 was compared to 

imatinib mesylate (combined PDGFR, c-kit, c-abl kinase inhibitor) and SB-431542 

(TGFβ receptor I kinase inhibitor) in an ex vivo TGFβ-driven fibroblast to 

myofibroblast differentiation assay, performed in primary human bronchial fibroblasts.    

 

Results: Treatment of rats with BIBF1000 resulted in attenuation of fibrosis as 

assessed by the reduction of collagen deposition and the inhibition of pro-fibrotic 

gene expression. In the cellular assay both SB-431542 and BIBF1000 showed dose-

dependent inhibition of TGFβ-induced differentiation whereas imatinib mesylate was 

inactive. 

 

Conclusions:  BIBF1000, or related small molecules with a similar kinase inhibition 

profile, may represent a novel therapeutic approach for the treatment of IPF. 
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BACKGROUND 
Fibrotic conditions can occur in all tissues but are especially prevalent in organs that 

have had frequent exposure to chemical and biological insults, for example the lung, 

skin, digestive tract, kidney and liver 1-3. These conditions often compromise the 

normal function(s) of the organ and many fibrotic diseases are at least severely 

debilitating, if not life-threatening 4.  

Fibroses of the lung represent a set of pathological changes which accompany a 

wide range of inflammatory conditions of the conducting airways. For instance, in 

patients with chronic obstructive pulmonary disease a patchy alveolar wall fibrosis 

with peribronchiolar distribution is present, whereas in patients with chronic asthma 

fibrosis is predominantly localised to the lamina reticularis resulting in a thickening of 

the basement membrane 5;6. In both conditions a continuously on-going 

inflammation-repair cycle in the airways leads to permanent structural changes in the 

airway wall (remodelling) of which interstitial collagen fibrosis is the major component 
7;8. Similar etiologies have been observed in the liver 9. In contrast to the fibrotic 

changes observed in COPD and asthma, in patients with diseases such as idiopathic 

pulmonary fibrosis (IPF) and acute respiratory distress syndrome (ARDS), the fibrotic 

changes are more severe and widely disseminated. In these diseases, fibrosis is 

associated with extreme morbidity and the clinical course is invariably one of gradual 

deterioration. Median length of survival from time of diagnosis varies between 2.5 and 

3.5 yr 4;10.  

Although the degree of pulmonary fibrosis differs between various lung diseases, 

there is evidence to suggest that the underlying pathophysiological mechanisms 

involved in the development may be similar across diseases. In all forms of 

pulmonary fibrosis, fibroblasts and myofibroblasts are the most predominant cells 
11;12. Both cell types become activated by growth factors secreted by the airway 

epithelium after the inflammatory damage 13;14. Depending on the precise stimulatory 

milieu, fibroblasts transform to myofibroblasts or proliferate, resulting in areas of 

fibroblastic foci which are thought to be the sites of active extracellular matrix (ECM), 

collagen and fibronectin synthesis and which are regarded to the be leading edge of 

fibrosis 15;16.  

The polypeptide mediators and growth factors believed to be pivotal for the fibrotic 

process include transforming growth factor beta (TGFβ), vascular endothelial growth 
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factor (VEGF), basic fibroblast growth factor 2 (bFGF-2), platelet derived growth 

factor (PDGF), connective tissue growth factor (CTGF), insulin-like growth factor 

(IGF), epidermal growth factor (EGF), chemokine ligand-18 (CCL18) and endothelin-

1 (ET-1) 17-26. Amongst these, TGFβ is believed to be a critical mediator of 

fibrogenesis, exerting immunologic actions, direct effects on structural cells involved 

in the synthesis of ECM, fibroblast proliferation, and the differentiation of fibroblasts 

into myofibroblasts 27;28. Several preclinical studies have shown that inhibition of 

TGFβ-signalling results in attenuation of fibrosis in rodents 29-31, suggesting that drug-

targeting of the TGFβ pathway could provide a useful therapeutic intervention in 

human fibrotic diseases including IPF. Unfortunately, TGFβ is a pleiotropic mediator 

and a number of reports have suggested that anti-TGFβ therapy may result in a 

number of unacceptable adverse effects 32;33, particularly, tumour promotion. 

Another important fibrogenic mediator, PDGF, induces fibroblast chemotaxis, 

fibroblast proliferation, and promotes fibroblast-mediated tissue matrix contraction 34. 

Furthermore, a number of fibrogenic mediators such as TGFβ, IL-1, TNF-α, bFGF 

and thrombin exhibit PDGF-dependent profibrotic activities 35-39. Two isoforms of 

PDGF, namely PDGF-C and PDGF-D, are increased in expression during bleomycin-

induced lung fibrosis and it has been shown that (PDGF) receptor tyrosine kinase 

inhibitors markedly attenuate radiation-induced pulmonary fibrosis 35;40;41;45 . 

Fibroblasts isolated from patients with moderate to severe asthma have the ability to 

transform into myofibroblasts after in vitro stimulation with TGFβ resulting in the 

secretion of VEGF, FGF, and ET-1 42. ET-1 is a known potent mitogen for smooth 

muscle cells and is thought to be responsible for the increased smooth muscle mass 

in patients with chronic inflammation of the lungs. VEGF as well as bFGF-2 are 

elevated in patients with asthma and are associated with increased vascularity 43;44. 

Transfection of the soluble VEGF receptor (sflt -1) gene, resulted in attenuation of 

pulmonary fibrosis in a mouse model of bleomycin-induced pneumopathy, suggesting 

that an anti-VEGF approach might also offer a suitable anti-fibrotic therapy 18.   

We have recently shown in the bleomycin-induced lung fibrosis model in rats that an 

initial inflammatory phase is followed by subsequent fibrosis. Depending on the 

treatment scheme, anti-inflammatory and anti-fibrotic activities of test compounds can 

be discriminated in this model 45. Using this model, we showed that a prototype anti-

inflammatory treatment (the oral steroid prednisolone) attenuated lung fibrosis when 

commenced at day 1, but had no efficacy if administered from day 10 onwards. In 
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contrast, treatment with a prototype anti-fibrotic compound (oral imatinib mesylate, a 

c-abl / c-kit / PDGFR kinase inhibitor) was effective, even when administered 

beginning at day 10, post-bleomycin treatment 45. 

In this study, we used BIBF1000, a prototypical small molecule inhibitor selective for 

the family of VEGF, FGF, and PDGF receptor tyrosine kinases 46 and studied its 

activities in the aforementioned therapeutic bleomycin model and in an ex vivo assay 

of pulmonary fibrosis. We show that BIBF1000 attenuates fibrosis in vivo and inhibits 

the differentiation of fibroblasts to myofibroblasts in vitro, indicating that this class of 

compounds may be useful for the treatment of IPF while avoiding the possible 

adverse effects of direct TGFβ inhibition.   
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Materials and Methods 
 
Compounds 
Imatinib mesylate (Novartis, Basel, Switzerland) and bleomycin sulfate (HEXAL, 

Holzkirchen, Germany) were purchased from a local pharmacy. BIBF1000 46 was 

synthesized by the department of chemistry, Boehringer Ingelheim. SB-431542 47 is 

available from Sigma-Aldrich (Schnelldorf, Germany). Recombinant TGFβ1 (Serotec, 

Raleigh, North Carolina, USA) and TGFβ2 (Sigma-Aldrich, Schnelldorf, Germany) 

were diluted with sterile water and stored in siliconized tubes (Eppendorf, Hamburg, 

Germany). 

 

Bleomycin administration and treatment protocol 
All experiments were performed in accordance with German guidelines for animal 

welfare and were approved by the responsible authorities. 

A dose of 2.2 mg/kg bleomycin sulfate was determined to be efficacious in 

establishing interstitial pulmonary fibrosis 45. At day zero, male Wistar rats (10 per 

group) were intratracheally injected with bleomycin sulfate in 300 µl saline using a 

catheter (0.5 mm internal diameter, 1.0 mm external diameter) through the nasal 

passage. To determine the fully effective dose of BIBF1000 rats treated with 2.2 

mg/kg bleomycin, were treated with BIBF1000 (10, 30, and 50 mg/kg in 1 ml 0.1% 

Natrosol) from day 0 to day 21 and fibrotic markers were analyzed in lungs isolated at 

day 21. 50 mg/kg was the most efficacious dose showing a complete inhibition of 

bleomycin-induced fibrosis. At none of the applied doses the animals showed any 

signs of toxicological side effects. 

For the experiments described in this manuscript, BIBF1000 (50 mg/kg) was orally 

administered once daily from day 10 to day 21, after which the rats were sacrified 

and the lungs excised. As controls, rats were treated on day 0 with saline only (= 

control group), or rats treated with bleomycin received vehicle alone from days 10 - 

21 (= bleomycin group). The degree of fibrosis was analyzed again by gene 

expression profiling and histology of the excised lungs.  

 

Histology 
Histology was performed as described before 45. Collagen deposition was assessed 

using Masson�s Trichrome staining as previously described 45;48 .  
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Total RNA extraction and synthesis of cDNA 
The total RNA extraction and synthesis of cDNA was carried out using the methods 

we have previously published 45.  

 

Investigation of gene expression using real time PCR 
Gene expression was investigated using the methods we have previously published 
45. Primers for the 18S endogenous control and TGFβ1 were purchased as pre-

developed assay reagent kits (PDAR; Applied Biosystems, California, USA), whereas 

primers and probes for pro-collagen I, connective tissue growth factor (CTGF) and 

fibronectin were designed using PrimerExpress� (Applied Biosystems, California, 

USA). At least one of the primers or probes in each set overlapped an intron / exon 

junction, thus eliminating the possibility of amplifying any contaminating genomic 

DNA in the cDNA sample. The following primer and probe sequences were used: 

RAT Fibronectin: forward (F): 5�-GAT GCC GAT CAG AAG TTT GGA-3�, reverse 
(R): 5�-TCG TTG GTC GTG CAG ATC TC-3�, probe (Pr): 5�-FAM-CTG CCC AAT 

GGC TGC CCA TGA- 3�TAMRA; RAT Pro-Collagen: F: 5�-CAG ACT GGC AAC 

CTG AAG AAG TC-3�, R: 5�-TCG CCC CTG AGC TCG AT-3�, Pr: 5�-FAM-CTG CTC 

CTC CAG GGC TCC AAC GA-3�TAMRA; RAT CTGF: F: 5'-CGC CAA CCG CAA 

GAT TG-3', R: 5'-TAC ACG GAC CCA CCG AAG AC-3', Pr: 5'-FAM-CGT GTG CAC 

TGC CAA AGA TGG TGC-3' TAMRA; Human CTGF: F: 5'-GCG GCT TAC CGA 

CTG GAA-3', R: 5'-GGA CCA GGC AGT TGG CTC TA-3', Pr: 5'-FAM- CAC GTT 

TGG CCC AGA CCC AAC TAT GA- 3' TAMRA; Human α-SMA: F: 5'-GAC AGC 

TAC GTG GGT GAC GAA-3', R: 5'-TTT TCC ATG TCG TCC CAG TTG-3', Pr: 5'-

FAM-TGA CCC TGA AGT ACC CGA TAG AAC ATG GC-3' TAMRA. 

 

Gene expression investigation of primary fibroblast cultures from patients with 
fibrotic lung disease 
CCD25 lung fibroblasts were purchased from ECACC European Collection of Cell 

Cultures (Porton Down, Salisbury, Wiltshire; UK). Fibroblasts were obtained from 

outgrowths of transbronchial biopsy material taken from patients with lung fibrosis at 

the University Hospital Freiburg (for patient information, see table 2). The study 

received ethics approval from the appropriate hospital authorities and all patients 

underwent a process of informed consent. Fresh bronchial biopsies were placed on a 

15 cm Petri-dish pre-coated with collagen I (Sigma-Aldrich, Schnelldorf, Germany) in 



 8

culture medium (RPMI + 1 % Glutamine + 1 % penicillin / streptomycin + 15 % FCS; 

Invitrogen, Karlsruhe, Germany). After 21 days, cells were trypsinized and re-cultured 

in 75 cm2 tissue culture flasks. 

For the fibroblast differentiation assay cells were seeded at a density of 3 x 105 cells. 

Serum-free medium was added 24 h before TGFβ2 (0.4 nM) and the inhibitors (used 

at concentrations of 30 nM, 100 nM, 300 nM, 1 µM and 3 µM). After 72 h cells were 

lysed with 500 µl of Trizol (Invitrogen, Karlsruhe, Germany) and the cell lysate was 

stored at -80 °C until further analysis.  

 

Immunofluorescent detection of α-SMA as a marker for myofibroblasts 

Fibroblasts seeded on 8 well chamber slides at a density of 5 x 104 cells per well 

were incubated in serum free RPMI medium for 24 h. Inhibitors (3 µM) were added 

30 min before addition of TGFβ2 (0.4 nM). After 72 h the medium was removed and 

the slides were fixed. Detection of αSMA was performed by incubation with a 

monoclonal anti-αSMA antibody (Sigma-Aldrich, Schnelldorf, Germany; diluted 1:100 

with PBS) and a FITC conjugated rabbit anti-mouse antibody (DAKO, Glostrup, 

Denmark) (diluted 1:500 in PBS). The slides were cover-slipped using a mixture of 

propidium iodide (DAKO, Glostrup, Denmark) and mounted with MOWIOL 

(Calbiochem, San Diego, USA).  

 

Phospho-SMAD-2 ELISA 
HaCat cells (CLS Cell Lines Service; Eppelheim, Germany) seeded into a 96 well 

microtiter plate at a concentration of 3 x 104 cell per well were incubated for two days. 

Following an incubation in serum-free medium for 3 h, the compounds, dissolved in 

medium containing 10 % dimethyl sulfoxide (DMSO), were added up to a final 

concentration of 50 µM and TGFβ1 (5 ng/ml) was added to the appropriate wells 15 

min later. After incubation for 30 min cells were lysed with 120 µl 10 X lysis buffer (20 

mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 

mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 µg/ml 

leupeptin, 1 mM PMSF). Lysates were stored at -80 °C. To perform the phospho-

SMAD-2 ELISA, a monoclonal anti-SMAD 2/3 antibody (Upstate, Dundee, UK; diluted 

1:250) was coated on the surface of a 96 well plate (Nunc F8 Maxisorp) and 

incubated with the lysates at room temperature for 90 min. A rabbit polyclonal anti-

phospho-Smad2 antibody (Upstate, Dundee, UK) was added to the bound material 
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and immunocomplexes were detected by addition of an alkaline phosphatase labeled 

mouse anti-rabbit antibody (Dako, Glostrup, Denmark) using p-Nitrophenyl 

Phosphate (pNPP; Upstate, Dundee, UK) as substrate. The plate was incubated in 

the dark at 37 °C and the optical density of the signal was measured at 406 nm with 

an ELISA plate reader (Tecan Genios Plus, Tecan, Männedorf, Switzerland).   

 

Determining the IC50 values for TGFβRI and TGFβRII kinase inhibition 

The inhibitory actions of SB-431542, imatinib mesylate and BIBF1000 on the kinase 

activity of TGFβRI and TGFβRII were determined using the Promega Kinase-Glo� 

kit (Promega, Mannheim, Germany) according to the manufacturer's protocol.  

 

Statistics 
All statistical analyses were carried out using GraphPad Prism V 4.02 software 

(GraphPad, California, USA). Comparisons were made using a non-parametric T-test 

(Mann-Whitney U test) and a significant value was considered to be p ≤ 0.05. On all 

graphs,* signifies a significance level of p≤ 0.05, ** signifies a significance level of p ≤ 

0.01 and  *** signifies a significance level of p≤ 0.001. 
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Results 
The effect of BIBF1000 on the development of fibrosis in a therapeutic rat 
bleomycin model 
BIBF1000 (figure 1) was identified as a selective inhibitor of the family of VEGF, 

PDGF, and FGF receptor tyrosine kinases 46. To test whether BIBF1000 would exert 

anti-fibrotic activity in lung fibrosis, the compound was tested in a rat bleomycin 

model. BIBF1000 was used at its fully effective dose (50 mg/kg) in a therapeutic 

setting 45 with daily oral treatment from days 10 to day 21 post bleomycin 

administration. As controls, groups of rats received saline instead of bleomycin 

(saline group), or animals treated with bleomycin received vehicle only (bleomycin 

group). After 22 days, animals were sacrificed and the level of fibrosis was 

determined by gene expression profiling of TGFβ1, procollagen-I, fibronectin, and 

CTGF of isolated lung tissue. As shown in figure 2, the gene expression of these 

factors is very low in the saline-treated control group and is increased after bleomycin 

treatment. In rats exposed to bleomycin, treatment with 50 mg/kg BIBF1000 from day 

10 to day 21 resulted in expression levels comparable to those observed in rats 

treated with saline alone.  

To address the deposition of collagens at the protein level, lung sections obtained at 

day 22 were stained with Masson´s Trichrome. As shown in figure 3, collagen 

deposition, as indicated by blue staining, is weak in the saline-treated control group. 

In contrast, rats treated with bleomycin alone showed extensive pulmonary fibrosis in 

the interstitial spaces. Fibrosis was strongly attenuated when bleomycin-treated rats 

received 50 mg/kg BIBF1000, with collagen staining levels comparable to the rats 

treated with saline.   

 

TGFβ-stimulated myofibroblast formation is inhibited by BIBF1000 in vitro  

It had been previously shown that stimulation of primary fibroblasts with TGFβ 

induces fibroblast proliferation and differentiation into myofibroblasts 49. To determine 

whether BIBF1000 would influence the TGFβ-mediated induction of myofibroblasts, 

primary fibroblasts obtained from outgrowths of transbronchial biopsies (table 1) were 

treated with 0.4 nM TGFβ2 for 72 h in the absence or presence of BIBF1000. 

Furthermore, SB-431542, reported to be a potent and selective inhibitor of the TGFβ 

superfamily of kinases 47;50 was included as a reference. The differentiation of 

fibroblasts to myofibroblasts by TGFβ2 was determined by assessing the expression 
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of α smooth muscle actin (αSMA) and connective tissue growth factor (CTGF). As 

shown in figure 4 A and B, cells treated for 72 h with TGFβ2 display a robust staining 

for αSMA, suggesting that differentiation into myofibroblasts had taken place. In 

contrast, both BIBF1000 and SB-431542 blocked the differentiation into 

myofibroblasts as seen by the absence of αSMA staining (figure 4 C and D). To 

quantify the effects of BIBF1000 and SB-431542, expression of αSMA was 

determined by real time PCR. As shown in figure 5, both BIBF1000 and SB-431542 

inhibited αSMA gene expression (as well as CTGF gene expression, data not shown) 

in a concentration-dependent manner in three primary fibroblast cultures and in 

CCD25 lung fibroblasts.  

Since BIBF1000 showed a weak inhibition of the isolated TGFβ-receptor I kinase 

(table 2), we asked whether the cellular activities mediated by BIBF1000 could be 

accounted for by direct inhibition of TGFβRI. We therefore established a quantitative 

ELISA assay for the detection of phospho-SMAD2 (an immediate downstream target 

of TGFβRI) as a marker for the intracellular activity of TGFβRI. HaCat cells were 

stimulated with TGFβ for 30 min in the presence or absence of BIBF1000 and the 

amount of phosphorylated SMAD2 was determined after lysis of the cells. Again, SB-

431542 was used as a positive control. As shown in figure 5 B, treatment with 

BIBF1000, at concentrations exceeding those needed to inhibit TGFβ-mediated 

fibroblast differentiation, did not block the TGFβ-induced phosphorylation of SMAD2, 

whereas treatment with SB-431542 abrogated the phosphorylation of SMAD2 in a 

concentration-dependent manner (figure 5 B). Therefore, we surmise that BIBF1000 

is blocking other cellular pathway(s) needed to induce and/or maintain the 

myofibroblast phenotype without directly interfering with SMAD-dependent TGFβ 

signalling.  

Previously, it has been shown, that imatinib mesylate exerts anti-fibrotic activity in 

bleomycin-induced lung fibrosis model 41;45. We were therefore interested in studying 

the effects of imatinib mesylate on the TGFβ-mediated differentiation of primary 

fibroblasts to myofibroblasts and on the TGFβ-mediated phosphorylation of SMAD2. 

As shown in figure 4 E and 5 A, imatinib mesylate did not block TGFβ-induced αSMA 

expression at the protein or mRNA level in primary fibroblasts nor did it influence the 

TGFβ-induced phosphorylation of SMAD2 in HaCat cells (figure 5 B).  
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Discussion 
The use of different treatment regimes in the bleomycin model may prove a valuable 

method by which drugs with true anti-fibrotic potential can be identified and 

investigated 41;45. In the present study, we tested BIBF1000, previously identified as 

an inhibitor of the receptor tyrosine kinases for VEGF, FGF, and PDGF, and show 

that BIBF1000 is attenuating established lung fibrosis in an in vivo setting. 

Furthermore, the compound blocked TGFβ-mediated differentiation of human primary 

lung fibroblasts isolated from lung fibrosis patients.  

Inhibition of the pathways regulated by CTGF, IGF-I, VEGF, FGF, PDGF and TGFβ 

have been suggested to provide novel therapeutic approaches to the treatment of 

fibrosis associated with chronic lung diseases. As discussed earlier, each of these 

growth factors has distinctive roles in the pathophysiology of fibrosis and many are 

induced by TGFβ. However, the relative contribution of each of these pathways for 

the pathogenesis of lung fibrosis remains obscure and may furthermore depend on 

the specific stage and the type of the fibrotic disease. TGFβ is the most potent pro-

fibrotic growth factor known and it has been shown that interference with the TGFβ-

pathway will attenuate fibrosis of different origin 30;51;53. However, direct inhibition of 

TGFβ-signalling, e.g. via small-molecule inhibition of TGFβ receptor kinases, may not 

offer a viable therapeutic option due to the pleiotropic functions of this growth factor 

which suggest that a number of side effects, including especially SMAD-dependent 

promotion of tumour formation, might be associated with a long-term anti-TGFβ-

treatment 31-33. These concerns are particularly important in light of the dramatically 

increased lung cancer rates seen in IPF patients 54;55. It was therefore interesting to 

note that BIBF1000 was able to block TGFβ-mediated differentation of primary 

fibroblasts isolated from normal lung and from patients with fibrotic lung diseases in 

the absence of inhibition of the TGFβ receptor kinases. This suggests that fibroblasts 

transform to myofibroblasts through the actions of TGFβ via downstream factor(s) 

which are inhibited by BIBF1000. Since differentiation of fibroblasts to myofibroblasts 

is a phenomenon seen in fibroblasts isolated from normal lung and from a number of 

different diseases including asthma 13;56, liver cirrhosis 57, renal fibrosis 58, 

sarcoidosis, IPF, and UIP,  BIBF1000 or related compounds may be of general utility 

in a number of fibrotic diseases.   

It has been shown that c-abl is a SMAD-independent signalling molecule downstream 

of TGFβ required for morphological transformation and expression of extracellular 



 13

matrix 59. Although we and others have previously shown that imatinib mesylate (a 

PDGFR / c-abl / c-kit inhibitor) is efficacious in the bleomycin-induced lung fibrosis 

model 41;45;59, little effect on the differentiation of fibroblasts was observed following 

treatment with imatinib mesylate, indicating that neither PDGF nor c-abl (nor the 

combination) are the sole mediators of the differentiation process. As shown by 

global expression profiling 60, more than 100 genes play a role in TGFβ-mediated 

fibroblast-myofibroblast differentiation. Future cell culture experiments comparing 

gene expression profiles with the inhibitors described here could provide important 

clues about the mechanism of TGFβ-mediated fibroblast-myofibroblast differentiation. 

Since BIBF1000 is an inhibitor of the receptor tyrosine kinases for PDGF, FGF, and 

VEGF it is tempting to speculate that the concerted inhibition of several pro-fibrotic 

factors is required for its anti-fibrotic activity. PDGF is believed to play a role in the 

pathogenesis of fibrotic disease by stimulating fibroblast chemotaxis, fibroblast 

proliferation, and by promoting fibroblast-mediated matrix contraction 61. 

Furthermore, PDGF is important in inducing the secretion of growth factors and ECM 

components in fibroblasts 19 and it induces proliferation and the production of 

fibronectin of both normal and fibrotic lung fibroblasts. Interestingly, PDGF did not 

have any effect on the production of interstitial collagens, again, supporting the 

hypothesis that the concerted action of several factors may be required to induce all 

aspects of fibrosis. Basic FGF (bFGF or FGF-2), is released by activated fibroblasts 

and damaged epithelial cells during remodelling processes associated with bronchial 

asthma 14, 62-64 and it stimulates the proliferation and fibronectin production of human 

lung fibroblasts. Furthermore, TGFβ1-induced proliferation of fibroblasts is mediated 

through the release of extracellular FGF-2 since FGF-2-blocking antibodies inhibited 

the proliferation of fibroblasts 19;62. Finally, it has been shown that both PDGF and 

FGF-2 are important factors in the migration of myofibroblasts 65, suggesting that 

blockade of both pathways might be required to interfere with myofibroblasts.  

The function of angiogenesis and of pro-angiogenic factors like VEGF for the 

pathophysiology of pulmonary fibrosis is currently not understood. Neovascularization 

with anastamoses between the systemic and pulmonary vasculature is apparent at 

sites of fibrosis 44;66. However, a regional heterogeneity of the vascularization in IPF 

patients has been reported and it has been proposed that this heterogeneity may on 

the one site support fibroproliferation but may block on the other site normal repair 

mechanisms 66. Although the exact site and mechanism of the neovascularization 
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remains controversial, it is tempting to speculate that angiogenesis may play a role in 

IPF, acute respiratory distress syndrome (ARDS) and other lung fibroses, and that 

the use of VEGF inhibitors might attenuate these processes. 

We presume that the combined VEGFR, FGFR and PDGFR inhibition of BIBF1000 is 

acting in a concerted manner to control fibrosis. Of course we cannot rule out the 

possibility that inhibitory effects of some, as yet, unidentified targets of BIBF1000 

may also play a role in this process.  

 

Conclusion 
In summary, our data suggest that BIBF1000, or a molecule with a similar kinase 

inhibition profile, may present a novel therapeutic opportunity to treat IPF. Its 

distinctive inhibitory profile is uniquely capable of preventing fibroblast-myofibroblast 

differentiation, a crucial step in the establishment of fibrosis, without directly affecting 

SMAD signalling. Ultimately, only clinical trials in IPF and other fibrotic diseases will 

show whether such compounds can stop or slow the inexorable course of this 

invariably fatal disease. 
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Figures 
 
Figure 1 
Chemical structure of BIBF1000 

 
 

Figure 2:  
BIBF1000 inhibits the gene expression of pro-fibrotic marker genes in the rat 
bleomycin model. Rats (10 animals per group) were treated either with saline or 

Bleomycin on day 0. Treatment with vehicle or BIBF1000 (p.o.; 50 mg/kg) 

commenced at day 10 and was continued daily until day 21. On day 22, rats were 

sacrificed and a part of the left lung lobe was processed for RNA extraction. The 

gene expression levels of TGFß1, Procollagen I, Fibronectin, and CTGF were 

determined by quantitative RT-PCR. The gene expression for each gene is indicated 

relative to endogenous 18S RNA control. Values are given as fold induction. The 

bars represent median values. Statistics were determined by use of a Mann-Whitney 

U test ( *** p = 0.001). 
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Figure 3 
Collagen staining of representative lung sections. Rats (10 animals per group) 

were treated either with saline or Bleomycin on day 0. Treatment with vehicle or 

BIBF1000 (p. o.; 50 mg/kg) commenced on day 10 and was continued daily until day 

21. On day 22, rats were sacrificed and the lungs were fixed with paraformaldehyde, 
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prior to paraffin embedding. Sections (4 µM) were stained with Masson's Trichrome 

stain. Muscle and cells are stained red, nuclei are stained black and collagens are 

stained blue. Three representative photomicrographs are shown for each of the 

groups. Magnification x 250. 

 
 

Figure 4 
BIBF1000 blocks TGFß-mediated differentiation of fibroblasts. 
Fibroblasts obtained from from biopsies of patients with fibrotic lung disease were 

cultured on collagen I coated chamber slides for 72 h in (A) serum free medium 

(SFM) alone, (B) SFM + 0.4 nM TGFβ2, (C) SFM + 0.4 nM TGFβ2 + 5 µM SB-

431542, (D) SFM + 0.4 nM TGFβ2 + 5 µM BIBF1000, or (E) SFM + 0.4 nM TGFβ2 + 5 

µM imatinib mesylate. αSMA filaments (green) were detected with a monoclonal 

antibody and visualised with a fluorescein conjugated rabbit anti-mouse antibody. 

Magnification x 400. 
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Figure 5 

Activity of BIBF1000, imatinib mesylate, and SB-431542 on TGFß2-induced α-

smooth muscle gene expression and on TGFß-mediated SMAD 
phosphorylation. (A) Primary fibroblasts lines isolated from bronchial biopsies of 

three patients with lung fibrosis (# 2217, 2272, 2278) and the primary lung fibroblast 

line CCD25 were incubated with TGFβ2 in the presence of SB-431542, BIBF1000 and 

imatinib mesylate at concentrations ranging from 0 - 30 µM. After for 72 h the gene 

expression levels of αSMA were determined by quantitative RT-PCR, normalised 

relative to endogenous 18 S RNA. Data are presented as % of gene expression 

compared to DMSO alone. (B) HaCat cells were incubated in serum free medium 

with the respective inhibitors to final concentrations ranging from 0 to 50 µM. After 15 

min, 5 ng/ml TGFβ1 was added and incubation was continued for 30 min before the 

cells were lysed. The amount of phosphorylated Smad2 was determined by ELISA. 

100% corresponds to the phosphorylation of Smad2 after stimulation with 5 ng/ml 

TGFβ1. 
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Tables 

Table 1: Patient information from cultured primary bronchial fibroblasts  
 

 
 

 

 

 

 

 

 

 

 

Table 2: The IC50 values for BIBF1000, Imatinib Mesylate and SB-431542 

against TGFβ receptors I & II 

 

 

 

 

Patient/ 
cell line 

Sex Age Diagnosis Smoker 

     
2217 F 40 Sarcoidosis No 

     
2272 F 75 Idiopathic lung fibrosis No 

     
2278 M 56 Fibrosis / Usual Interstitial 

Pneumonia 
No 

     
CCD25 M 7 Glioma (normal lung) No 

Inhibitor IC50 
    
 
Imatinib Mesylate 

 
TGFβ RI 

 
>

 
50 µM 

 TGFβ RII > 50 µM 
    
 
BIBF1000 

 
TGFβ RI 

 
 

 
1.6 µM 

 TGFβ RII > 50 µM 
    
 
SB-431542 

 
TGFβ RI 

  
125 nM 

 TGFβ RII  4.2 µM 
 


