Human breath odors and their use in diagnosis

Ann N Y Acad Sci. 2007 Mar:1098:252-66. doi: 10.1196/annals.1384.011.

Abstract

Humans emit a complex array of volatile and nonvolatile molecules that are influenced by an individual's genetics, health, diet, and stress. Olfaction is the most ancient of our distal senses and may be used to evaluate food and environmental toxins as well as recognize kin and potential predators. Many body odors evolved to be olfactory messengers, which convey information between individuals. Consequently, those practicing the healing arts have used olfaction to aid in their diagnosis of disease since the dawn of medical practice. Studies using modern instrumental analyses have focused upon analysis of breath volatiles for biomarkers of internal diseases. In these studies, a subject's oral health status appears to seldom be considered. However, saliva and properly collected alveolar air samples must pass over or come in contact with the posterior dorsal surface of the tongue, a site of bacterial plaque development and source of halitosis-related volatiles. Because of our basic research into the nature of human body odors, our lab has received referrals of people with idiopathic malodor production, from either the oral cavity or body. We developed a protocol to help differentiate individuals with chronic halitosis from those with the genetic, odor-producing metabolic disorder trimethylaminuria (TMAU). In our referred population, TMAU is the largest cause of undiagnosed body odor. Many TMAU-positive individuals present with oral symptoms of dysguesia and halitosis as well as body odor. We present data regarding the presentation of our referred subjects as well as the analytical results from a small number of these subjects regarding their oral levels of halitosis-related malodorants and trimethylamine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers / analysis*
  • Breath Tests*
  • Halitosis / diagnosis
  • Halitosis / metabolism
  • Humans
  • Methylamines / analysis
  • Odorants / analysis*

Substances

  • Biomarkers
  • Methylamines
  • trimethylamine