Cellular pathophysiology and therapy of pulmonary hypertension

J Lab Clin Med. 2001 Dec;138(6):367-77. doi: 10.1067/mlc.2001.119285.

Abstract

The identification of several mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, a member of the transforming growth factor beta receptor family, gives hope for new insights into the pathophysiology of pulmonary hypertension. Genetic predisposition might dictate the responses of pulmonary artery fibroblasts, smooth muscle cells, and endothelial cells, as well as platelets and leukocytes, or their specific interactions with different extrinsic factors. These cells possess distinct subtypes and interact with each other. Pulmonary hypertension is associated with vasoconstriction, remodeling, and in situ thrombosis of the pulmonary arteries, but the initial events and their relationship to the genetic background are presently unknown. Current therapeutic approaches are based on our knowledge of the physiologic regulation of pulmonary artery tone, pathophysiologic changes, and our clinical experience with different treatment strategies. Beyond diuretics and anticoagulants, prostaglandins are generally accepted therapeutic agents for primary pulmonary hypertension and related diseases, whereas high-dose calcium-channel blockers are reserved for a small subset of patients, those who respond favorably to vasodilators in an acute test. Long-term intravenous prostacyclin infusion has become the most important specific therapy for primary pulmonary hypertension and associated diseases. However, this therapy is hampered by catheter complications and systemic side effects. Alternative application routes of prostacyclin or its stable analogs may avoid these problems. Inhaled application of the prostacyclin analog iloprost results in predominant pulmonary vasodilation with few systemic side effects and may possess clinical efficacy similar to that of intravenous prostacyclin. Inhaled nitric oxide is widely accepted as a screening agent for active responders to vasodilators and has a similar hemodynamic profile as inhaled iloprost, although the percentage of responders is considerably lower. However, there are unsolved toxicologic questions and practical difficulties concerning the safe long-term application of nitric oxide. Combining inhaled vasodilators with phosphodiesterase inhibitors may prolong the duration of the effects and improve the convenience of inhaled therapy for pulmonary hypertension. Therapeutic approaches in the future may aim at the transforming growth factor beta pathway and at the identification of early stages of the disease to prevent further disease progression.

Publication types

  • Review

MeSH terms

  • Animals
  • Drug Therapy, Combination
  • Humans
  • Hypertension, Pulmonary* / drug therapy
  • Hypertension, Pulmonary* / physiopathology
  • Phosphodiesterase Inhibitors / therapeutic use
  • Prostaglandins / therapeutic use
  • Pulmonary Artery / pathology
  • Pulmonary Artery / physiopathology
  • Vasodilator Agents / therapeutic use

Substances

  • Phosphodiesterase Inhibitors
  • Prostaglandins
  • Vasodilator Agents