Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage

Pulm Pharmacol Ther. 2000;13(2):61-9. doi: 10.1006/pupt.2000.0231.

Abstract

Intratracheal instillation of lipopolysaccharide (LPS) induces an inflammatory response characterized by infiltration of polymorphonuclear neutrophils (PMNs) into the extracellular matrix and by the release of mediators that play a fundamental role in lung damage. In the present study, we developed a mouse model which allows correlation of the inflammatory response and haemorrhagic tissue injury in the same animal. In particular, the different steps of the inflammatory response and tissue damage were evaluated by the analysis of three parameters: myeloperoxidase (MPO) activity in the parenchyma, reflecting PMNs accumulation into the lung, inflammatory cells count in the bronchoalveolar lavage fluid (BALF), reflecting their extravasation, and total haemoglobin estimation in BALF, a marker of haemorrhagic tissue damage consequent to PMNs degranulation. In our experimental conditions, intra-tracheal administration of 10 microg/mouse of LPS evoked an increase of MPO activity in the lung at 4 h (131%) and 6 h (147%) from endotoxin challenge. A significant increase of PMNs in the BALF was noticed at these times with a plateau between the 12nd and 24th h. PMN accumulation produced a time-dependent haemorrhagic lung damage until 24 h after LPS injection (4 h: +38%; 6 h: +23%; 12 h: +44%; 24 h: +129% increase of haemoglobin concentration in the BALF vs. control). Lung injury was also assessed histopathologically. Twenty-four hours after the challenge, diffuse alveolar haemorrhage, as well as PMN recruitment in the interstitium and alveolus were observed in the LPS group. This model was pharmacologically characterized by pretreatment of LPS-treated mice with antiinflammatory drugs acting on different steps of the <<inflammatory cascade>>. We demonstrated that: a) betamethasone (1, 3, 10, 30 mg/kg p.o.) reduced in a dose-dependent manner the MPO activity, the number of inflammatory cells and, at the same time, lung injury; b) pentoxifylline, a TNFalpha production inhibitor (200 mg/kg i.p.), inhibited PMN extravasation and lung haemorrhage but it was not able to reduce MPO activity in the lung; c) L-680,833, an anti-elastase compound (30 mg/kg po), decreased significantly only the haemorrhagic lung damage; d) indomethacin, a non steroidal antiinflammatory drug (5 mg/kg p.o.), did not show any effect on any of the parameters considered. In conclusion, our in vivo mouse model is a practical alternative to animal models of ARDS (Adult Respiratory Distress Syndrome) recently described and it permits to dissect and to characterize the different steps of PMNs infiltration and, at the same time, the damage caused by their activation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bronchoalveolar Lavage Fluid / cytology
  • Cell Degranulation
  • Cell Movement
  • Disease Models, Animal
  • Female
  • Hemorrhage / etiology
  • Inflammation / etiology
  • Lipopolysaccharides / toxicity*
  • Lung Diseases / chemically induced*
  • Lung Diseases / enzymology
  • Lung Diseases / physiopathology
  • Mice
  • Neutrophils / drug effects*
  • Neutrophils / pathology
  • Neutrophils / physiology
  • Peroxidase / metabolism

Substances

  • Lipopolysaccharides
  • Peroxidase