Skip to main content
Log in

How Does Leflunomide Modulate the Immune Response in Rheumatoid Arthritis?

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Leflunomide has recently been approved by the US Food and Drug Administration for the treatment of rheumatoid arthritis. This approval was based on data from double-blind multicentre trials in the US (US 301; leflunomide versus methotrexate versus placebo) and multicentre European trials (leflunomide versus sulfasalazine versus placebo, and leflunomide versus methotrexate versus placebo). In these trials, leflunomide was superior to placebo and similar to methotrexate or sulfasalazine in efficacy and adverse effects. Both methotrexate and leflunomide retarded the rate of radiological progression, entitling them to qualify as disease-modifying agents (DMARDs).

Leflunomide is an immunomodulatory drug that may exert its effects by inhibiting the mitochondrial enzyme dihydro-orotate dehydrogenase (DHO-DH), which plays a key role in the de novo synthesis of the pyrimidine ribonucleotide uridine monophosphate (rUMP). The inhibition of human DHO-DH by A77-1726, the active metabolite of leflunomide, occurs at concentrations (approximately 600 nmol/L) that are achieved during treatment of rheumatoid arthritis. We propose that leflunomide prevents the expansion of activated and autoimmune lymphocytes by interfering with cell cycle progression. This is mediated by inadequate production of rUMP and utilises mechanisms involving the sensor protein p5 3. The relative lack of toxicity of A77 - 1726 on nonlymphoid cells may be due to the ability of these cells to fulfil their ribonucleotide requirements by use of the salvage pyrimidine pathway, which makes them less dependent on de novo synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao W, Kao P, Chao A, et al. Mechanism of the anti-proliferative action of leflunomide. J Heart Lung Trans 1995; 14: 1016–30

    CAS  Google Scholar 

  2. Popovic S, Bartlett R. Disease modifying activity of HWA 486 on the development of SLE in the MRL/lpr mouse. Agents Actions 1986; 19: 313–4

    Article  PubMed  CAS  Google Scholar 

  3. Popovic S, Bartlett R. The use of the murine chronic graft vs host (CGVH) disease, a model for systemic lupus erythematosus (SLE) for drug discovery. Agent Actions 1987; 21: 284–6

    Article  CAS  Google Scholar 

  4. Glant T, Milecz K, Bartlett R. Immunomodulation of proteoglycan-induced progressive polyarthritis by leflunomide. Immunopharmacology 1991; 23: 105–16

    Google Scholar 

  5. Stosic-Grujicic S, Dimitrijevic M, Bartlett RR. A novel immunomodulating agent — leflunomide inhibits experimental autoimmune diabetes in mice. Transplant Proc 1996; 28: 3072–3

    PubMed  CAS  Google Scholar 

  6. Bartlett R, Schleyerbach R. Immunopharmacologic properties of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity. I. Disease modifying action on adjuvant arthritis in the rat. Int J Immunopharmacol 1988; 7: 7–18

    Article  Google Scholar 

  7. Thoenes G, Sitter T, Langer K, et al. Leflunomide (HWA 486) inhibits experimental autoimmune tubulointerstitial nephritis in rats. In J Immunopharmacol 1989; 92: 921–9

    Article  Google Scholar 

  8. Ogawa T, Inazu M, Gotoh K, et al. Therapeutic effects of leflunomide, a new antirheumatic drug, on glomerulonephritis induced by anti-basement membrane antibody in rats. Clin Immunol Immunopathol 1991; 6: 103–18

    Article  Google Scholar 

  9. Vidic-Dankovic B, Kosec D, Damjanovic M, et al. Leflunomide prevents the development of experimentally induced myasthenia gravis. Int J Immunopharmacol 1995; 17: 273–81

    Article  PubMed  CAS  Google Scholar 

  10. Bartlett RR, Brendel S, Zielinski T, et al. Leflunomide, an immunorestoring drug for the therapy of autoimmune disorders, especially rheumatoid arthritis. Transplant Proc 1996; 28: 3074–8

    PubMed  CAS  Google Scholar 

  11. Mladenovic V, Domljan Z, Rozman B, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Arthritis Rheum 1995; 38: 713–22

    Article  Google Scholar 

  12. Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared to placebo and methotrexate. Arch Int Med 1999. In press

  13. Weinblatt M, Kremer J, Coblyn J, et al. Leflunomide plus methotrexate in refractory rheumatoid arthritis: a pilot study [abstract]. Arthritis Rheum 1997; 40: S974

    Article  Google Scholar 

  14. Smolen JS, Kalden JR, Scott DL, et al. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: a double-blind, randomised, multicentre trial. European Leflunomide Study Group [see comments]. Lancet 1999; 353: 259–66

    Article  PubMed  CAS  Google Scholar 

  15. Cherwinski HM, McCarley D, Schatzman R, et al. The immunosuppressant leflunomide inhibits the progression through the cell cycle by a novel mechanism. J Pharm Exp Ther 1995; 272: 460–70

    CAS  Google Scholar 

  16. Fairbanks LD, Bofill M, Ruckemann K, et al. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem 1995; 270: 29682–9

    Article  PubMed  CAS  Google Scholar 

  17. Silva HT, Cao W, Shorthouse R, et al. Mechanism of action of leflunomide: in vivo uridine administration reverses its inhibition of lymphocyte proliferation. Transplant Proc 1996; 28: 3082–4

    PubMed  CAS  Google Scholar 

  18. Siemasko KF, Chong AS, Williams JW, et al. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation 1996; 61: 635–42

    Article  PubMed  CAS  Google Scholar 

  19. Morris R, Huang X, Cao W, et al. Leflunomide (HWA 486) and its analog suppress T and B-cell proliferation in vitro, acute rejection, ongoing rejection and antidonor antibody synthesis in mouse, rat, and cynomolgus monkey recipients. Transplant Proc 1995; 27: 445–7

    PubMed  CAS  Google Scholar 

  20. Linke SP, Clarkin KC, Di Leonardo A, et al. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 1996; 10: 934–47

    Article  PubMed  CAS  Google Scholar 

  21. Herrmann M, Frangou C, Kirschbaum B. Effects of leflunomide on early T-cell signaling and cell cycle commitment. Rheumatol Eur 1997; 26(2): S16

    Google Scholar 

  22. Brazelton TR, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996; 8: 710–20

    Article  PubMed  CAS  Google Scholar 

  23. Weber S, Harnisch L. Use of a population pharmacokinetic model to predict clinical outcome of leflunomide, a new DMARD, in the treatment of rheumatoid arthritis. J Rheumatol 1997; 27:46S

    Google Scholar 

  24. Barankiewicz J, Cohen A. Purine nucleotide metabolism in phytohemagglutinin-induced human T lymphocytes. Arch Biochem Biophys 1987; 258: 167–75

    Article  PubMed  CAS  Google Scholar 

  25. Danska JS, Guidos CJ. Essential and perilous: V(D)J recombination and DNA damage checkpoints in lymphocyte precursors. Semin Immunol 1997; 9: 199–206

    Article  PubMed  CAS  Google Scholar 

  26. Di Leonardo A, Linke SP, Clarkin K, et al. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994; 8: 2540–51

    Article  PubMed  Google Scholar 

  27. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303

    Article  PubMed  CAS  Google Scholar 

  28. Fontoura B, Sorokina E, David D, et al. p53 is covalently linked to 5.8S rRNA. Mol Cell Biol 1992; 12: 5145–51

    PubMed  CAS  Google Scholar 

  29. Marechall V, Elenbaas B, Piette J, et al. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 1994; 14: 7414–20

    Google Scholar 

  30. Wahl G, Linke S, Paulson T, et al. Maintaining genetic stability through a p53 mediated checkpoint control. Cancer Survey 1997; 29: 183–219

    CAS  Google Scholar 

  31. Lill NL, Grossman SR, Ginsberg D, et al. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387: 823–7

    Article  PubMed  CAS  Google Scholar 

  32. Woo RA, McLure KG, Lees-Miller SP, et al. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 1998; 394: 700–4

    Article  PubMed  CAS  Google Scholar 

  33. Lane D. p53, guardian of the genome. Nature 1992; 385: 15–6

    Article  Google Scholar 

  34. Avantaggiati ML, Ogryzko V, Gardner K, et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 1997; 89: 1175–84

    Article  PubMed  CAS  Google Scholar 

  35. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31

    Article  PubMed  CAS  Google Scholar 

  36. Weinberg R. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30

    Article  PubMed  CAS  Google Scholar 

  37. Wu M, Bellas RE, Shen J, et al. Roles of the tumor suppressor p53 and the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in receptor-mediated apoptosis of WEHI 231 B lymphoma cells. J Exp Med 1998; 187: 1671–9

    Article  PubMed  CAS  Google Scholar 

  38. Deng C, Zhang P, Harper J, et al. Mice lacking p21 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–84

    Article  PubMed  CAS  Google Scholar 

  39. Caelles C, Helmberg A, Karin M. p53 dependent apoptosis in the absence of transcriptional activation of p53 target genes. Nature 1994; 370: 220–3

    Article  PubMed  CAS  Google Scholar 

  40. Green DR, Scott DW. Activation-induced apoptosis in lymphocytes. Curr Opin Immunol 1994; 6: 476–87

    Article  PubMed  CAS  Google Scholar 

  41. Cherwinski HM, Cohn RG, Cheung P, et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J Pharmacol Exp Ther 1995; 275: 1043–9

    PubMed  CAS  Google Scholar 

  42. Ruckemann K, Fairbanks L, Carrey E, et al. Leflunomide inhibits pyrimidine de novo synthesis in mitogen stimulated T-lymphocytes from healthy humans. J Biol Chem 1998; 273: 21682–91

    Article  PubMed  CAS  Google Scholar 

  43. Herrmann M, Grangous C, Kirschbaum B. Cell cycle control of the de novo pyrimidine synthesis inhibitor leflunomide through the p53 and p21 pathway. Arthritis Rheum 1997; 40: 123–37

    Google Scholar 

  44. Chatterjee S, Berger N. Growth-phase-dependent response to DNA damage in poly(ADP-ribose) polymerase deficient cell lines: basis for a new hypothesis describing the role of poly(ADP-ribose) polymerase in DNA replication and repair. Mol Cell Biochem 1994; 138: 61–9

    Article  PubMed  CAS  Google Scholar 

  45. Linke SP, Clarkin KC, Wahl GM. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res 1997; 57: 1171–9

    PubMed  CAS  Google Scholar 

  46. Williamson RA, Yea CM, Robson PA, et al. Dihydroorotate dehydrogenase is a high affinity binding protein for A77 1726 and mediator of a range of biological effects of the immunomodulatory compound. J Biol Chem 1995; 270: 22467–72

    Article  PubMed  CAS  Google Scholar 

  47. Greene S, Watanabe K, Braatz-Trulson J, et al. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem Pharmacol 1995; 50: 861–7

    Article  PubMed  CAS  Google Scholar 

  48. Williamson RA, Yea CM, Robson PA, et al. Dihydroorotate dehydrogenase is a target for the biological effects of leflunomide. Transplant Proc 1996; 28: 3088–91

    PubMed  CAS  Google Scholar 

  49. Kuo EA, Hambleton PT, Kay DP, et al. Synthesis, structure-activity relationships, and pharmacokinetic properties of dihydroorotate dehydrogenase inhibitors: 2-cyano-3-cyclopropyl-3-hydroxy-N-[3′-methyl-4′-(trifluoromethyl)-phenyl] propenamide and related compounds. J Med Chem 1996; 39: 4608–21

    Article  PubMed  CAS  Google Scholar 

  50. Ren S, Wu SK, Lien EJ. Dihydroorotate dehydrogenase inhibitors: quantitative structure-activity relationship analysis. Pharm Res 1998; 15: 286–95

    Article  PubMed  CAS  Google Scholar 

  51. Peters GJ, Schwartsmann G, Nadal JC, et al. In vivo inhibition of the pyrimidine de novo enzyme dihydroorotic acid dehydrogenase by brequinar sodium (DUP-785; NSC 368390) in mice and patients. Cancer Res 1990; 50: 4644–9

    PubMed  CAS  Google Scholar 

  52. Bader B, Knecht W, Fries M, et al. Expression, purification, and characterization of histidine-tagged rat and human flavoenzyme dihydroorotate dehydrogenase. Protein Exp Purif 1998; 13: 414–22

    Article  CAS  Google Scholar 

  53. Knecht W, Loffler M. Species related inhibition of human and rat dihydroorotate dehydrogenase by immunosuppressive isoxazol and cinchonic acid derivatives. Biochem Pharmacol 1998. In press

  54. Peters GJ, Laurensse E, de Kant E, et al. The relationship between dihydroorotic acid dehydrogenase and in vitro and in vivo cytostatic effects of brequinar sodium (DUP-785; NSC 368390). Adv Exp Med Biol 1989; 375–82

  55. Silva Jr HT, Cao W, Shorthouse RA, et al. In vitro and in vivo effects of leflunomide, brequinar, and cyclosporine onpyrimidine biosynthesis. Transplant Proc 1997; 29: 1292–3

    Article  PubMed  CAS  Google Scholar 

  56. Huang LC, Clarkin KC, Wahl GM. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci USA 1996; 93: 4827–32

    Article  PubMed  CAS  Google Scholar 

  57. Kent EF, Crawford J, Choen HJ, et al. Development of multiple monoclonal serum immunoglobulins (multiclonal gammopathy) following both HLA-identical unfractionated and T cell-depleted haploidentical bone marrow transplantation in severe combined immunodeficiency. J Clin Immunol 1990; 10: 106–13

    Article  PubMed  Google Scholar 

  58. Cao WW, Kao PN, Aoki Y, et al. A novel mechanism of action of the immunomodulatory drug, leflunomide: augmentation of the immunosuppressive cytokine, TGF-beta 1, and suppression of the immunostimulatory cytokine, IL-2. Transplant Proc 1996; 28: 3079–80

    PubMed  CAS  Google Scholar 

  59. Theofilopoulos AN. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Immunol Today 1995; 16: 90–8

    Article  PubMed  CAS  Google Scholar 

  60. Morris R. New small molecule immunosuppressants for transplantation: review of essential concepts. J Heart Lung Transplant 1993; 12: S275–S6

    PubMed  CAS  Google Scholar 

  61. Pally C, Smith D, Jaffee B, et al. Side effects of brequinar and brequinar analogues, in combination with cyclosporine in the rat. Toxicology 1998; 15: 207–22

    Article  Google Scholar 

  62. Xu X, Blinder L, Shen J, et al. In vivo mechanism by which leflunomide controls lymphoproliferative and autoimmune disease in MRL/MpJ-lpr/lpr mice. J Immunol 1997; 159: 167–74

    PubMed  CAS  Google Scholar 

  63. Elder RT, Xu X, Williams JW, et al. The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J Immunol 1997; 159: 22–7

    PubMed  CAS  Google Scholar 

  64. Kirsch I, Lista F. Lymphocyte-specific genomic instability. Semin Immunol 1997; 9: 207–15

    Article  PubMed  CAS  Google Scholar 

  65. Knecht W, Bergjohann U, Gonski S, et al. Functional expression of a fragment of human dihydroorotate dehydrogenase by means of the baculovirus expression vector system, and kinetic investigation of the purified recombinant enzyme. Eur J Biochem 1996; 240: 292–301

    Article  PubMed  CAS  Google Scholar 

  66. Dimitrijevic M, Bartlett RR. Leflunomide, a novel immunomodulating drug, inhibits homotypic adhesion of mononuclear cells in rheumatoid arthritis. Transplant Proc 1996; 28: 3086–7

    PubMed  CAS  Google Scholar 

  67. Yeh LS, Gregory CR, Griffey SM, et al. Effects of leflunomide and cyclosporine on myocutaneous allograft survival in the rat. Transplantation 1996; 62: 861–3

    Article  PubMed  CAS  Google Scholar 

  68. Salmi M, Rajala P, Jalkanen S. Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J Clin Invest 1997; 99: 2165–72

    Article  PubMed  CAS  Google Scholar 

  69. Hamilton L, Vojnovic I, Bakhle Y, et al. The anti-inflammatory drug leflunomide inhibits in vitro and in vivo the activity of COX-2 more potently than the induction of COX-2 or iNOS [abstract]. Proc Br Pharmacol Soc 1996; 18: C51

    Google Scholar 

  70. Schorlemmer HU, Kurrle R. Synergistic activity of malononitrilamides with cyclosporine to control and reverse xenograft rejection. Int J Tissue React 1997; 19: 149–56

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, R.I., Herrmann, M.L., Frangou, C.G. et al. How Does Leflunomide Modulate the Immune Response in Rheumatoid Arthritis?. BioDrugs 12, 301–315 (1999). https://doi.org/10.2165/00063030-199912040-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199912040-00007

Keywords

Navigation