Skip to main content
Log in

Maximising the Clinical Use of Exercise Gaseous Exchange Testing in Children With Repaired Cyanotic Congenital Heart Defects

The Development of an Appropriate Test Strategy

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Implicit in deciding upon an exercise test strategy to elucidate cardiopulmonary function in children with congenital heart disease are appropriate application of gas exchange techniques and the significance of the data collected to the specific congenital heart disorder. Post-operative cardiopulmonary responses to exercise in cyanotic disorders are complex and, despite a large body of extant literature in paediatric patients, there has been much difficulty in achieving quality and consistency of data.

Maximal oxygen uptake is widely recognised as the best single indicator of cardiopulmonary function and has therefore been the focus of most clinical exercise tests in children. Many children with various heart anomalies are able to exercise to maximum without adverse symptoms, and it is essential that test termination is based on the same criteria for these children. Choosing appropriate, valid indicators of maximum in children with congenital heart disease is beset by difficulties.

Such maximal intensity exercise testing procedures have been challenged on the grounds that they do not give a good indication of cardiopulmonary function that is relevant to real life situations. Furthermore, they are prone to much interindividual variability and error in the definition of maximal exertion. Alternative strategies have been proposed which focus upon dynamic submaximal and kinetic cardiopulmonary responses, which are thought to be less dependent on maximal voluntary effort and more suited to the daily activity patterns of children. These methods are also not without problems. Variability in anaerobic threshold measurements and controversy regarding its physiological meaning have been debated.

It is recommended that an appropriate cardiopulmonary exercise gas exchange test strategy, which provides clinically useful information for children with cyanotic congenital heart disease, should include both maximal and submaximal data. The inclusion of oxygen uptake kinetics and ventilatory data are encouraged, since they may allow the distinction between a pulmonary, cardiovascular or inactivity related exercise limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I.
Table II.
Table III.
Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Rosenthal G. Prevalence of congenital heart disease. In: Garson A, Bricker JT, Fisher DJ, et al., editors. The science and practice of pediatric cardiology. Vol. 1. Baltimore (MD): Williams & Wilkins, 1998: 1083–105

    Google Scholar 

  2. Samanek M, Bass A, Ostadal B, et al. Effect of hypoxaemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 1989; 25: 265–70

    Article  PubMed  CAS  Google Scholar 

  3. Pelouch V, Pexieder T, Milerova M, et al. Protein remodelling of malformed human and mouse heart. In: Ostadal B, Nagano M, Takeda N, et al., editors. The developing heart. New York (NY): Lippincott-Raven, 1997: 357–72

    Google Scholar 

  4. Hornung TS, Bernard EJ, Celermajer DS, et al. Myocardial perfusion defects and associated systemic ventricular dysfunction in congenitally corrected transposition of the great arteries (ccTGA) [abstract]. 47th Annual Scientific Session of the American College of Cardiology; 1998 Mar 29–Apr 1; Atlanta (GA). J Am Coll Cardiol 1998; 31 Suppl. A: 326A

  5. Graham TP. Assessing the results of surgery for congenital heart disease: a continuing process [editorial]. Circulation 1982; 65: 1049–51

    Article  PubMed  Google Scholar 

  6. Patterson D, Treasure T. Disorders of the cardiovascular system. London: Edward Arnold, 1993

    Google Scholar 

  7. Ben Shachar G, Fuhhrman BP, Wang Y, et al. Rest and exercise hemodynamics after the Fontan procedure. Circulation 1982; 65: 1043–8

    Article  Google Scholar 

  8. Galioto FM. Physical activity for children with cardiac disease. In: Garson A, Bricker JT, Fisher DJ, et al., editors. The science and practice of pediatric cardiology. Vol. 1. Baltimore (MD): Williams and Wilkins, 1998: 2585–92

    Google Scholar 

  9. Garson SL. Psychological aspects of heart disease in childhood. In: Garson A, Bricker JT, Fisher DJ, et al., editors. The science and practice of pediatric cardiology. Vol. 1. Baltimore: Williams and Wilkins, 1998: 2929–38

    Google Scholar 

  10. Bar-Or O. Importance of differences between children and adults for exercise testing and exercise prescription. In: Skinner JS, editor. Exercise testing and exercise prescription for special cases. Philadelphia (PA): Lea and Febiger, 1993: 57–74

    Google Scholar 

  11. Activity and Health Research. Allied Dunbar National Fitness Survey. London: Sports Council and Health Education Authority, 1992

    Google Scholar 

  12. Myers JN. Essentials of cardiopulmonary exercise testing. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  13. Wasserman K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest 1997; 112: 1091–101

    Article  PubMed  CAS  Google Scholar 

  14. Hansen JE, Wassernan K. Pathophysiology of activity limitation in patients with interstitial lung disease. Chest 1996; 109: 1566–76

    Article  PubMed  CAS  Google Scholar 

  15. Paridon SM. Congenital heart disease: cardiac performance and adaptation to exercise. Pediatr Exerc Sci 1997; 9: 308–23

    Google Scholar 

  16. Cooper DM. Rethinking exercise testing in children: a challenge. Am J Respir Crit Care 1995; 152: 1154–7

    CAS  Google Scholar 

  17. Rowland TW. On buying a used car, or reflections on Dr. Cooper’s opus [editorial]. Pediatr Exerc Sci 1996; 8: 189–92

    Google Scholar 

  18. Washington RL, Bricker JT, Alpert BS, et al. Guidelines for exercise testing in the pediatric age group. Circulation 1994; 90: 2166–79

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong N, Welsman J. Young people and physical activity. Oxford: Oxford University Press, 1997

    Google Scholar 

  20. Ruttenberg HD, Adams TD, Orsmond GS, et al. Effects of exercise training on aerobic fitness in children after open heart surgery. Pediatr Cardiol 1983; 4: 19–24

    Article  PubMed  CAS  Google Scholar 

  21. Mulla N, Simpson P, Sullivan NM, et al. Determinants of aerobic capacity during exercise following complete repair of tetralogy of Fallot with a transannular patch. Pediatr Cardiol 1997; 18: 350–6

    Article  PubMed  CAS  Google Scholar 

  22. Sklansky MS, Pivarnik JM, O’Brian Smith E, et al. Exercise training hemodynamics and the prevalence of arrhythmias in children following tetralogy of Fallot repair. Pediatr Exerc Sci 1994; 6: 188–200

    Google Scholar 

  23. Mocellin R, Gildein P. Velocity of oxygen uptake response at the onset of exercise: a comparison between children after cardiac surgery and healthy boys. Pediatr Cardiol 1999; 20: 17–20

    Article  PubMed  CAS  Google Scholar 

  24. Joshi VM, Carey A, Simpson P, et al. Exercise performance following repair of hypoplastic left heart syndrome: a comparison with other types of Fontan patients. Pediatr Cardiol 1997; 18: 357–60

    Article  PubMed  CAS  Google Scholar 

  25. Page E, Perrault H, Flore P, et al. Cardiac output response to dynamic exercise after atrial switch repair for transposition of the great arteries. Am J Cardiol 1996; 77: 893–5

    Google Scholar 

  26. Douard H, Laurent L, Barat JL, et al. Cardiorespiratory response to exercise after venous switch operation for transposition of the great arteries. Chest 1997; 111: 23–9

    Article  PubMed  CAS  Google Scholar 

  27. Hill AV, Lupton CNH. Muscular exercise, lactic acid and the supply and utilization of oxygen. Q J Med 1923; 16: 135–71

    Article  CAS  Google Scholar 

  28. Rowland TW. Developmental exercise physiology. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  29. Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 1988; 20: 319–30

    Article  PubMed  CAS  Google Scholar 

  30. Armstrong N, Welsman J, Winsley R. Is peak V̇O2 a maximal index of children’s aerobic fitness? Int J Sports Med 1996; 17: 356–9

    Article  PubMed  CAS  Google Scholar 

  31. Noakes TD. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 1997; 29: 571–90

    Article  PubMed  CAS  Google Scholar 

  32. Noakes TD. Maximal oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints. A rebuttal. Med Sci Sports Exerc 1998; 30 (9): 1381–98

    PubMed  CAS  Google Scholar 

  33. Cunningham DA, van Watershoot BM, Paterson DH, et al. Reliability and reproducibility of maximal oxygen uptake measurements in children. Med Sci Sports Exerc 1977; 9: 104–8

    CAS  Google Scholar 

  34. Krahenbuhl GS, Pangrazi RP. Characteristics associated with running performance in young boys. Med Sci Sports Exerc 1983; 15: 486–90

    PubMed  CAS  Google Scholar 

  35. Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest 1992; 101: 485–9

    Article  PubMed  CAS  Google Scholar 

  36. Mahon AD, Marsh ML. Ventilatory threshold and oxygen uptake plateau at maximal exercise in 8- to 11-year old children. Pediatr Exerc Sci 1993; 5: 332–8

    Google Scholar 

  37. Armstrong N, Kirby BJ, McManus AM, et al. Aerobic fitness of prepubescent children. Ann Hum Biol 1995; 22: 427–41

    Article  PubMed  CAS  Google Scholar 

  38. Duncan GE, Mahon AD, Howe CA. Plateau in oxygen uptake at maximal exercise in male children. Pediatr Exerc Sci 1996; 8: 77–86

    Google Scholar 

  39. Myers JD, Walsh M, Sullivan M, et al. Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 1990; 68: 404–10

    Article  PubMed  CAS  Google Scholar 

  40. Cumming GR, Langford S. Comparison of nine exercise tests used in pediatric cardiology. In: Binkhorst RA, Kemper HCG, Saris WHM, editors. Children and exercise XI. Champaign (IL): Human Kinetics, 1985: 58–68

    Google Scholar 

  41. Sheehan JM, Rowland TW, Burke EJ. A comparison of four treadmill protocols for determination of maximal oxygen uptake in 10 to 12 year old boys. Int J Sports Med 1987; 8: 31–4

    Article  PubMed  CAS  Google Scholar 

  42. Mayers N, Gutin B. Physiological characteristics of elite prepubertal cross-country runners. Med Sci Sports 1979; 11: 172–6

    PubMed  CAS  Google Scholar 

  43. Bolens M, Friedli B. Sinus node function and conduction system before and after surgery for secundum atrial septal defect: an electrophysiologic study. Am J Cardiol 1984; 53: 1415–20

    Article  PubMed  CAS  Google Scholar 

  44. Fournier A, Young ML, Garcia DF, et al. Electrophysiologic cardiac function before and after surgery in children with atrioventricular canal. Am J Cardiol 1986; 57: 1137–41

    Article  PubMed  CAS  Google Scholar 

  45. Niederhauser H, Simonin P, Friedli B. Sinus node function and conduction system after complete repair of tetralogy of Fallot. Circulation 1975; 52: 214–20

    Article  PubMed  CAS  Google Scholar 

  46. Perrault H, Davignon A, Grief G, et al. Disturbance in heart rate during exercise following intracardiac repair: contribution of cardiopulmonary bypass. Pediatr Exerc Sci 1992: 4: 270–80

    Google Scholar 

  47. Kozlik R, Kramer HH, Wicht H, et al. Myocardial B-adrenoceptor density and the distribution of B1 and B2-adrenoceptor sub-populations in children with congenital heart disease. Eur J Pediatr 1991: 150: 388–94

    Article  PubMed  CAS  Google Scholar 

  48. Paridon SM, Sullivan NM, Schneider J, et al. Cardiopulmonary performance at rest and exercise after repair of total anomalous pulmonary venous connection. Am J Cardiol 1993; 72: 1444–7

    Article  PubMed  CAS  Google Scholar 

  49. Driscoll DJ, Feldt RH, Mottram CD, et al. Cardiorespiratory response to exercise after definitive repair of univentricular atrioventricular connection. Int J Cardiol 1987; 17: 73–81

    Article  PubMed  CAS  Google Scholar 

  50. Cooper DM, Weiler-Ravell D, Whipp BJ, et al. Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol 1984; 56: 628–34

    PubMed  CAS  Google Scholar 

  51. Washington RL, van Gundy JC, Cohen C, et al. Normal aerobic and anaerobic exercise data for North American school-age children. J Pediatr 1988; 112: 223–33

    Article  PubMed  CAS  Google Scholar 

  52. Troutman WB, Barstow TJ, Galindo Al, et al. Abnormal dynamic cardiorespiratory responses to exercise in pediatric patients after Fontan procedure. J Am Coll Cardiol 1998; 31: 668–73

    Article  PubMed  CAS  Google Scholar 

  53. Delamarche P, Monnier M, Gratas-Delamarche A, et al. Glucose and free fatty acid utilization during prolonged exercise in prepubertal boys in relation to catecholamine responses. Eur J Appl Physiol 1992; 65: 66–72

    Article  CAS  Google Scholar 

  54. Martinez LR, Haymes EM. Substrate utilization during treadmill running in prepubertal girls and women. Med Sci Sports Exere 1992; 24: 975–83

    CAS  Google Scholar 

  55. McManus AM. Cardiopulmonary function of prepubertal children in relation to exercise and training [thesis]. Exeter: University of Exeter, 1994

    Google Scholar 

  56. Rowland TW. Does peak oxygen uptake reflect maximum oxygen uptake in children? Evidence from supramaximal testing. Med Sci Sports Exerc 1993; 25: 689–93

    PubMed  CAS  Google Scholar 

  57. Turley KR, Wilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol 1997; 83: 948–57

    PubMed  CAS  Google Scholar 

  58. Goldberg B, Fripp RR, Lister G, et al. Effect of physical training on exercise performance of children following surgical repair of congenital heart disease. Pediatrics 1981; 68: 691–9

    PubMed  CAS  Google Scholar 

  59. MacLellan-Tobert SG, Driscoll DJ, Mottram CD, et al. Exercise tolerance in patients with Ebstein’s anomaly. J Am Coll Cardiol 1997; 29: 1615–22

    Article  PubMed  CAS  Google Scholar 

  60. Durongpisitkul K, Driscoll DJ, Mahoney DW, et al. Cardiopulmonary response to exercise after modified Fontan operation: determinants of performance. J Am Coll Cardiol 1997; 29: 785–90

    Article  PubMed  CAS  Google Scholar 

  61. Wasserman K, Whipp BJ, Koyal SN, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236–43

    PubMed  CAS  Google Scholar 

  62. Rostein A, Dotan R, Bar-Or O, et al. Effect of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys. Int J Sports Med 1986; 7: 281–6

    Article  Google Scholar 

  63. Tanaka H, Shindo M. Running velocity at blood lactate threshold of boys aged 6–15 years compared with untrained and trained young males. Int J Sports Med 1985; 6: 90–4

    Article  PubMed  CAS  Google Scholar 

  64. Williams JR, Armstrong N, Kirby BJ. The 4 mM blood lactate level as an index of exercise performance in 11–13 year old children. J Sports Sci 1990; 8: 139–47

    Article  PubMed  CAS  Google Scholar 

  65. Williams JR, Armstrong N. Relationship of maximal lactate steady state to performance at fixed blood lactate reference values in children. Pediatr Exerc Sci 1991; 3: 333–41

    Google Scholar 

  66. Armstrong N, Welsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev 1994; 22: 435–76

    Article  PubMed  CAS  Google Scholar 

  67. Sullivan MJ, Cobb FR. The anaerobic threshold in chronic heart failure: relation to blood lactate, ventilatory basis, reproducibility and response to exercise training. Circulation 1990; 81 Suppl. II: 47–58

    Google Scholar 

  68. Sullivan MJ, Binkley PK, Unverferth DV. Hemodynamic and metabolic responses of the exercising lower limb of humans. J Lab Clin Med 1987; 110: 145–52

    PubMed  CAS  Google Scholar 

  69. Beaver WL, Wasserman K, Whipp BJ. Improving the detection of lactate threshold during submaximal exercise in humans: studies with isotopic tracers. J Cardiopulm Rehabil 1985; 9: 331–40

    Google Scholar 

  70. Nagano Y, Baba R, Kuraishi K, et al. Ventilatory control during exercise in normal children. Pediatr Res 1998; 43: 704–7

    Article  PubMed  CAS  Google Scholar 

  71. Cooper DM, Kaplan M, Baumgarten L, et al. Coupling of ventilation and CO2 production during exercise in children. Pediatr Res 1987; 21: 568–72

    Article  PubMed  CAS  Google Scholar 

  72. Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 22–31

    PubMed  CAS  Google Scholar 

  73. Green FU, Hughson RL, Orr GW, et al. Anaerobic threshold blood lactate and muscle metabolites in progressive exercise. J Appl Physiol 1983; 53: 1032–8

    Google Scholar 

  74. Simon J, Young JAL, Blood DK, et al. Plasma lactate and ventilation threshold in trained and untrained cyclists. J Appl Physiol 1986; 60: 777–81

    PubMed  CAS  Google Scholar 

  75. Reybrouck T, Rogers R, Weymans M, et al. Serial cardiorespiratory exercise testing in patients with congenital heart disease. Eur J Pediatr 1995: 154: 801–6

    Article  PubMed  CAS  Google Scholar 

  76. Mader A. Evaluation of the endurance performance of marathon runners and theoretical analyses of test results. J Sports Med Phys Fitness 1991; 31: 1–19

    PubMed  CAS  Google Scholar 

  77. Saltin B, Strange S. Maximal oxygen uptake: ‘old’ and ‘new’ arguments for a cardiovascular limitation. Med Sci Sports Exerc 1992; 24: 30–7

    PubMed  CAS  Google Scholar 

  78. Palgi Y, Gutin B, Young J, et al. Physiologic and anthropometric factors underlying endurance performance in children. Int J Sports Med 1984; 5: 67–73

    Article  PubMed  CAS  Google Scholar 

  79. Shimizu M, Myers J, Buchanan N, et al. The ventilatory threshold: method, protocol and evaluator agreement. Am Heart J 1991; 122: 509–16

    Article  PubMed  CAS  Google Scholar 

  80. Dickstein K, Barvik S, Aarsland T, et al. A comparison of methodologies in detection of the anaerobic threshold. Circulation 1990; 81 Suppl. II: II38–46

    Google Scholar 

  81. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 1986; 60: 2020–7

    PubMed  CAS  Google Scholar 

  82. Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold. Adv Cardiol 1986; 35: 47–64

    PubMed  CAS  Google Scholar 

  83. Opasich C, Pinna GD, Bobbio M, et al. Peak exercise oxygen consumption in chronic heart failure: toward efficient use in the individual patient. J Am Coll Cardiol 1998; 31: 766–75

    Article  PubMed  CAS  Google Scholar 

  84. Reybrouck T, Weymans M, Stijns H, et al. Ventilatory anaerobic threshold for evaluating exercise performance in children with congenital left-to-right intracardiac shunts. Pediatr Cardiol 1986; 7: 19–24

    Article  PubMed  CAS  Google Scholar 

  85. Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise In: Weat JB, editor. Pulmonary gas exchange. Vol II. New York (NY): Academic Press, 1980: 33–96

    Google Scholar 

  86. Whipp BJ, Ward SA. Cardiopulmonary coupling during exercise. J Exp Biol 1982; 100: 175–93

    PubMed  CAS  Google Scholar 

  87. Zanconato S, Cooper DM, Armor Y. Oxygen cost and oxygen uptake dynamics and recovery with one minute of exercise in children and adults. J Appl Physiol 1991; 71: 993–8

    PubMed  CAS  Google Scholar 

  88. Poole DC, Richardson RS. Determinants of oxygen uptake: implications for exercise testing. Sports Med 1997; 24: 308–20

    Article  PubMed  CAS  Google Scholar 

  89. Hughson RL, Kowalchuk JM. Kinetics of oxygen uptake for submaximal exercise in hyperoxia, normoxia and hypoxia. Can J Appl Physiol 1995; 20: 198–210

    Article  PubMed  CAS  Google Scholar 

  90. Reybrouck ET, Deroost F, Van Der Hauwaert LG. Evaluation of breath-by-breath measurement of respiratory exchange in pediatric exercise testing. Chest 1992; 102: 147–52

    Article  PubMed  CAS  Google Scholar 

  91. Cooper DM, Berry C, Lamarra N, et al. Kinetics of oxygen uptake and heart rate at onset of exercise in children. J Appl Physiol 1985; 59: 211–7

    PubMed  CAS  Google Scholar 

  92. Sady S. Transient oxygen uptake and heart rate responses at the onset of relative endurance exercise in prepubertal boys and adults men. Int J Sports Med 1981; 2: 240–4

    Article  Google Scholar 

  93. Macek M, Vavra J. The adjustment of oxygen uptake at the onset of exercise: a comparison between pre-pubertal boys and young adults. Int J Sports Med 1980; 1: 70–2

    Article  Google Scholar 

  94. Hebestreit H, Kriemler S, Hughson RL, et al. Kinetics of oxygen uptake at the onset of exercise in boys and men. J Appl Physiol 1998; 85: 1833–41

    PubMed  CAS  Google Scholar 

  95. Cooper DM. Development of the oxygen transport system in normal children. In: Bar-Or O, editor. Advances in pediatric sport science. Vol. 3. Champaign (IL): Human Kinetics, 1989: 67–100

    Google Scholar 

  96. Wessel HU, Stout RL, Paul MIL Exercise in postoperative tricuspid atresia. In: Binkhorst RA, Kemper HCG, Saris WHM, editors. Children and exercise XI. Champaign (IL): Human Kinetics, 1985: 93–9

    Google Scholar 

  97. Drakonakis AC, Halloran KH. Oxygen consumption during recovery from exercise in children with congenital heart disease. Am J Dis Child 1974; 128: 651–6

    PubMed  CAS  Google Scholar 

  98. Armstrong N, Kirby BJ, McManus AM, et al. Prepubescents’ ventilatory responses to exercise with reference to sex and body size. Chest 1997; 112: 1554–60

    Article  PubMed  CAS  Google Scholar 

  99. Mulla N, Paridon SM, Pinsky WW. Cardiopulmonary performance during exercise in patients with repaired tetralogy of Fallot with absent pulmonary valve. Pediatr Cardiol 1995; 16: 120–6

    Article  PubMed  CAS  Google Scholar 

  100. Kelsey CJ, Duffin J. Changes in ventilation in response to ramp changes in treadmill exercise load. Eur J Appl Physiol 1992; 65: 480–4

    Article  CAS  Google Scholar 

  101. Medoff BD, Oelberg DA, Kanarek DJ, et al. Breathing reserve at the lactate threshold to differentiate a pulmonary mechanical from cardiovascular limit to exercise. Chest 1998; 113: 913–8

    Article  PubMed  CAS  Google Scholar 

  102. Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation. 2nd ed. Philadelphia (PA): Lea and Febiger, 1994

    Google Scholar 

  103. Godfrey S. Exercise testing in children. London: WB. Saunders, 1974

    Google Scholar 

  104. Rhodes J, Dave A, Pulling MC, et al. Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of Fallot. Am J Cardiol 1998; 81: 1217–9

    Article  PubMed  CAS  Google Scholar 

  105. Clark AL, Gatzoulis MA, Reddington AN. Ventilatory responses to exercise in adults after repair of tetralogy of Fallot. Br Heart J 1995; 73: 445–9

    Article  PubMed  CAS  Google Scholar 

  106. Grant GP, Garofany RP, Mansell AL, et al. Ventilatory response to exercise after intracardiac repair of tetralogy of Fallot. Am Rev Respir Dis 1991; 144: 833–6

    Article  PubMed  CAS  Google Scholar 

  107. Rosenthal M, Bush A, Deanfield J, et al. Comparison of cardiopulmonary adaptation during exercise in children after the atriopulmonary and total cavopulmonary connection Fontan procedures. Circulation 1995; 91: 372–8

    Article  PubMed  CAS  Google Scholar 

  108. Orenstein DM. Assessment of exercise pulmonary function. In: Rowland TW, editor. Pediatric laboratory exercise testing. Champaign (IL): Human Kinetics, 1993: 141–64

    Google Scholar 

  109. Bloch KE, Barandun J, Sackner MA. Effect of mouthpiece breathing on cardiorespiratory response to intense exercise. Am J Respir Crit Care Med 1995; 151: 1087–92

    PubMed  CAS  Google Scholar 

  110. Maxwell DL, Cover D, Hughes JMB. Effect of respiratory apparatus on timing and depth of breathing in man. Respir Physiol 1985; 61: 255–64

    Article  PubMed  CAS  Google Scholar 

  111. James DS, Lambert WE, Mennier CM, et al. Oronasal distribution of ventilation at different ages. Arch Environ Health 1997; 52: 118–23

    Article  PubMed  CAS  Google Scholar 

  112. Druz WS, Sharp JT. Activity of respiratory muscles in upright and recumbent humans. J Appl Physiol 1981; 51: 1552–61

    PubMed  CAS  Google Scholar 

  113. Daly M De B. Breath-hold diving: mechanisms of cardiovascular adjustment in the mammal. In: Baker PF, editor. Recent advances in physiology. London: Churchill Livingstone, 1984: 201–45

    Google Scholar 

  114. Casabury R, Burns M, Poszasz E, et al. Use of a mouthpiece during exercise tests reduces exercise tolerance in patients with COPD [abstract]. Am Rev Respir Dis 1992; 147: A191

    Google Scholar 

  115. Staats BA, Grinton SF, Mottram CD, et al. Quality control in exercise testing. Progr Pediatr Cardiol 1993; 2: 11–7

    Article  Google Scholar 

  116. Rowland TW, Cunningham LN. Development of ventilatory responses to exercise in normal white children. Chest 1997; 111: 327–32

    Article  PubMed  CAS  Google Scholar 

  117. Bailey RC, Olson J, Pepper SL, et al. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 1995; 27: 1033–41

    Article  PubMed  CAS  Google Scholar 

  118. McManus A, Armstrong N. Physical activity patterns of Hong Kong Chinese primary school children. Pediatr Exerc Sci 1996; 8: 177–8

    Google Scholar 

  119. Armstrong N, McManus A, Welsman J, et al. Physical activity patterns and aerobic fitness among pre-pubescent children. Eur Phys Educ Rev 1996; 2: 19–29

    Article  Google Scholar 

  120. Armstrong N, Welsman J. Physical activity patterns of 5 to 7-year-old children and their mothers. Eur J Phys Educ 1998; 3: 145–55

    Article  Google Scholar 

  121. Kahrs N. A survey of the physical activity of 926 Norwegian schoolchildren with congenital heart diseases. In: Oseid S, Carlsen KH, editors. Children and exercise XII. Champaign (IL): Human Kinetics, 1989: 339–48

    Google Scholar 

  122. Reybrouck T, Weymans M, Stijns H, et al. The fallacy of the heart rate response to exercise in evaluating exercise performance in children operated on for tetralogy of Fallot. In: Rutenfranz J, Mocellin R, Klimt F, editors. Children and exercise XII. Champaign (IL): Human Kinetics, 1986: 259–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison McManus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, A., Leung, M. Maximising the Clinical Use of Exercise Gaseous Exchange Testing in Children With Repaired Cyanotic Congenital Heart Defects. Sports Med 29, 229–244 (2000). https://doi.org/10.2165/00007256-200029040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200029040-00002

Keywords

Navigation