Skip to main content
Log in

Methods for “Indirect” challenge tests including exercise, eucapnic voluntary hyperpnea, and hypertonic aerosols

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Bronchial provocation tests that use stimuli that act indirectly to cause airway narrowing have a high specificity for identifying people with active asthma who have the potential to respond to treatment with antiinflammatory drugs. The first test to be developed was exercise and it was used to assess the efficacy of drugs such as sodium cromoglycate. Eucapnic voluntary hyperpnea was developed later, as a surrogate test for exercise. Hypertonic aerosols were introduced to mimic the dehydrating effects of evaporative water loss that occurs during hyperpnea. A wet aerosol of 4.5% saline or a dry powder formulation of mannitol is used. At present the indirect challenge tests are becoming increasingly recognised as appropriate for monitoring treatment with inhaled steroids. Indirect tests identify those with potential for exercise-induced bronchoconstriction, an important problem for some occupations, such as the defence forces, fire fighters and the police force and for some athletic activities. The advantage in using an indirect challenges, over a direct challenge with a single pharmacological agonist, is that a positive response indicates that inflammatory cells and their mediators (prostaglandins, leukotrienes and histamine) are present in the airways in sufficient numbers and concentration to indicate that asthma is active at the time of testing. The corollary to this is that a negative test in a known asthmatic indicates good control or mild disease. Another advantage is that healthy subjects do not have significant airway narrowing to indirect challenge tests. The protocols used for challenge with indirectly acting stimuli are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Schoor, J., Joos, G. F., and Pauwels, R. A. (2000), Indirect bronchial hyperresponsiveness in asthma: mechanisms, pharmacology and implications for clinical research. Eur. Respir. J. 16, 514–533.

    Article  PubMed  Google Scholar 

  2. Joos, G. F., Kips, J. C., and Pauwels, R. A. (1993), Direct and indirect bronchial responsiveness. Respir. Med. 87, 31–36.

    Article  PubMed  Google Scholar 

  3. Carlsen, K.-H., Engh, G., Mork, M., and Schroder, E. (1998), Cold air inhalation and exercise-induced bronchoconstriction in relationship to methacholine bronchial responsiveness: different patterns in asthmatic children and children with other chronic lung diseases. Respir. Med. 92, 308–315.

    Article  PubMed  CAS  Google Scholar 

  4. Lim, T. K., Taylor, R. G., Watson, A., Joyce, H., and Pride, N. B. (1988), Changes in bronchial responsiveness to inhaled histamine over four years in middle aged male smokers and ex-smokers. Thorax 43, 599–604.

    PubMed  CAS  Google Scholar 

  5. Silverman, M. and Anderson, S. D. (1972), Standardization of exercise tests in asthmatic children. Arch. Dis. Child. 47, 882–889.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson, S. D., Silverman, M., Konig, P., and Godfrey, S. (1975), Exercise-induced asthma. A review. Br. J. Dis. Chest. 69, 1–39.

    Article  PubMed  CAS  Google Scholar 

  7. Eggleston, P. A., Rosenthal, R. R., Anderson, S. D., Anderton, R., Bierman, C. W., Bleecker, E. R., et al. (1979), Guidelines for the methodology of exercise challenge testing of asthmatics. J. Allergy Clin. Immunol. 64, 642–645.

    Article  PubMed  CAS  Google Scholar 

  8. Phillips, Y. Y., Jaeger, J. J., Laube, B. L., and Rosenthal, R. R. (1985), Eucapnic voluntary hyperventilation of compressed gas mixture. A simple system for bronchial challenge by respiratory heat loss. Am. Rev. Respir. Dis. 131, 31–35.

    PubMed  CAS  Google Scholar 

  9. Anderson, S. D., Schoeffel, R. E., and Finney, M. (1983), Evaluation of ultrasonically nebulised solutions as a provocation in patients with asthma. Thorax 38, 284–291.

    PubMed  CAS  Google Scholar 

  10. Anderson, S. D. (1984), Is there a unifying hypothesis for exercise-induced asthma? J. Allergy Clin. Immunol. 73, 660–665.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson, S. D., Brannan, J., Spring, J., Spalding, N., Rodwell, L. T., Chan, K., et al. (1997), A new method for bronchial provocation testing in asthmatic subjects using a dry powder of mannitol. Am. J. Respir. Crit. Care Med. 156, 758–765.

    PubMed  CAS  Google Scholar 

  12. Brannan, J. D., Anderson, S. D., Koskela, H., and Chew, N. (1998), Responsiveness to mannitol in asthmatic subjects with exercise and hyperventilation-induced asthma. Am. J. Respir. Crit. Care Med. 158, 1120–1126.

    PubMed  CAS  Google Scholar 

  13. Holzer, K., Anderson, S.D., Chan, H.-K., Douglass, J. (2002), Mannitol as a challenge to identify exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 27th November.

  14. Brannan, J. D., Anderson, S. D., Gomes, K., King, G. G., Chan, H.-K., and Seale, J. P. (2001), Fexofenadine decreases sensitivity to and montelukast improves recovery from inhaled mannitol. Am. J. Respir. Crit. Care Med. 163, 1420–1425.

    PubMed  CAS  Google Scholar 

  15. Brannan, J. D., Koskela, H., Anderson, S. D., and Chan, H.-K. (2002), Budesonide reduces sensitivity and reactivity to inhaled mannitol in asthmatic subjects. Respirology 7, 37–44.

    Article  PubMed  Google Scholar 

  16. Cushley, M. J., Tattersfield, A. E., and Holgate, S. T. (1983), Inhaled a denosine and guanosine on airway resistance in normal and asthmatic subjects. Br. J. Clin. Pharmacol. 15, 161–165.

    PubMed  CAS  Google Scholar 

  17. Polosa, R. and Holgate, S. T. (1997), Adenosine bronchoprovocation: a promising marker of allergic inflammation in asthma? Thorax 52, 919–923.

    PubMed  CAS  Google Scholar 

  18. Sterk, P. J., Fabbri, L. M., Quanjer, P. H., Cockcroft, D. W., O'Byrne, P. M., Anderson, S. D., et al. (1993), Airway responsiveness: standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 6, 53–83.

    Google Scholar 

  19. Joos, G. F., O'Conner, B., Anderson, S. D. Chung, F., Cockcroft, D. W., Dahlén, B., et al. (2002), ERS Task Force—Indirect Airway Challenges. Eur. Respir. J. In press.

  20. Vathenen, A. S., Knox, A. J., Wisniewski, A., and Tattersfield, A. E. (1991), Effect of inhaled budes-onide on bronchial reactivity to histamine, exercise, and eucapnic dry air hyperventilation in patients with asthma. Thorax 46, 811–816.

    PubMed  CAS  Google Scholar 

  21. Anderson, S. D., du Toit, J. I., Rodwell, L. T., and Jenkins, C. R. (1994), Acute effect of sodium cromoglycate on airway narrowing induced by 4.5 percent saline aerosol. Outcome before and during treatment with aerosol corticosteroids in patients with asthma. Chest 105, 673–680.

    PubMed  CAS  Google Scholar 

  22. du Toit, J. I., Anderson, S. D., Jenkins, C. R., Woolcock, A. J., and Rodwell, L. T. (1997), Airway responsiveness in asthma: bronchial challenge with histamine and 4.5% sodium chloride before and after budesonide. Allergy Asthma Proc. 18, 7–14.

    Article  PubMed  Google Scholar 

  23. Pedersen, S. and Hansen, O. R. (1995), Budesonide treatment of moderate and severe asthma in children: a dose-response study. J. Allergy Clin. Immunol. 95, 29–33.

    Article  PubMed  CAS  Google Scholar 

  24. Doull, L., Sandall, D., Smith, S., Schrieber, J., Freezer, N. J., and Holgate, S. T. (1997), Differential inhibitory effect of regular inhaled corticosteroid on airway responsiveness to adenosine 5′ monophosphate, methacholine, and bradykinin in symptomatic children with recurrent wheeze. Pediatr. Pulmonol. 23, 404–411.

    Article  PubMed  CAS  Google Scholar 

  25. O'Connor, B. J., Ridge, S. M., Barnes, P. J., and Fuller, R. W. (2001), Greater effect of inhaled budesonide on adenosine 5′-monophosphate-induced than on sodium-metabisulfite-induced bronchoconstriction in asthma. Am. Rev. Respir. Dis. 146, 560–564.

    Google Scholar 

  26. Van den Berge, M., Kerstjens, H. A., Meijer, R. J., de Reus, D. M., Koëter, G. H., Kauffman, H. F., et al. (2001), Corticosteroid-induced improvement in the PC20 of adenosine monophosphate is more closely associated with reduction in airway inflammation than improvement in the PC20 of methacholine. Am. J. Respir. Crit. Care Med. 164, 1127–1132.

    PubMed  Google Scholar 

  27. Brannan, J. D., Gulliksson, M., Kumlin, M., Anderson, S. D., and Dahlén, S.-E. (2001), Inhalation of mannitol, used as a model for exercise-induced bronchoconstriction (EIB), causes release of leukotrienes and a mast cell marker in asthmatic subjects. Eur. Respir. J. 18, 102S.

    Google Scholar 

  28. O'Sullivan, S., Roquet, A., Dahlén, B., Larsen, F., Eklund, A., Kumlin, M., et al. (1998), Evidence for mast cell activation during exercise-induced bronchoconstriction. Eur. Respir. J. 12, 345–350.

    Article  PubMed  Google Scholar 

  29. Polosa, R., Ng, W. H., Crimi, N., Vancheri, C., Holgate, S. T., Church, M. K., et al. (1995), Release of mast-cell-derived mediators after endobronchial adenosine challenge in asthma. Am. J. Respir. Crit. Care Med. 151, 624–629.

    PubMed  CAS  Google Scholar 

  30. Rodwell, L. T., Anderson, S. D., du Toit, J., and Seale, J. P. (1992), Nedocromil sodium inhibits the airway response to hyperosmolar challenge in patients with asthma. Am. Rev. Respir. Dis. 146, 1149–1155.

    PubMed  CAS  Google Scholar 

  31. Anderson, S. D., Rodwell, L. T., Daviskas, E., Spring, J. F., and du Toit, J. (1996), The protective effect of nedocromil sodium and other drugs on airway narrowing provoked by hyperosmolar stimuli: a role for the airway epithelium. J. Allergy Clin. Immunol. 98, S124–134S.

    Article  PubMed  CAS  Google Scholar 

  32. Brannan, J. D., Anderson, S. D., Freed, R., Leuppi, J. D., Koskela, H., and Chan, H.-K. (2000), Nedocromil sodium inhibits responsiveness to inhaled mannitol in asthmatic subjects. Am. J. Respir. Crit. Care Med. 161, 2096–2099.

    PubMed  CAS  Google Scholar 

  33. Phillips, G. D., Ng, W. H., Church, M. K., and Holgate, S. T. (1990), The response of plasma histamine to bronchoprovocation with methacholine, adenosine 5′-monophosphate and allergen in atopic non asthmatic subjects. Am. Rev. Respir. Dis. 141, 9–13.

    PubMed  CAS  Google Scholar 

  34. Baki, A. and Orhan, F. (2002), The effect of loratadine in exercise-induced asthma. Arch. Dis. Child. 86, 38–39.

    Article  PubMed  CAS  Google Scholar 

  35. Rodwell, L. T., Anderson, S. D., and Seale, J. P. (1991), Inhaled clemastine inhibits airway narrowing caused by aerosols of non-isotonic saline. Eur. Respir. J. 4, 1126–1134.

    PubMed  CAS  Google Scholar 

  36. Finnerty, J. P. and Holgate, S. T. (1990), Evidence for the roles of histamine and prostaglandins as mediators in exercise-induced asthma: the inhibitory effect of terfenadine and flurbiprofen alone and in combination. Eur. Respir. J. 3, 540–547.

    PubMed  CAS  Google Scholar 

  37. Rafferty, P., Beasley, C. R. W., and Holgate, S. T. (1987), The contribution of histamine to immediate bronchoconstriction provoked by inhaled allergen and adenosine 5′-monophosphate in atopic asthma. Am. Rev. Respir. Dis. 136, 369–373.

    PubMed  CAS  Google Scholar 

  38. Israel, E., Dermarkarian, R., Rosenberg, M., Sperling, R., Taylor, G., Rubin, P., et al. (1990), The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N. Engl. J. Med. 323, 1740–1744.

    Article  PubMed  CAS  Google Scholar 

  39. Kemp, J. P., Dockhorn, R. J., Shapiro, G. G., Nguyen, H. H., Reiss, T. F., Seidenberg, B. C., et al. (1998), Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J. Pediatr. 133, 424–428.

    Article  PubMed  CAS  Google Scholar 

  40. Rorke, S., Jennison, S., Jeffs, J. A., Sampson, A. P., Arshad, H., and Holgate, S. T. (2002), Role of cysteinyl leukotrienes in adenosine 5′-monophosphate induced bronchoconstriction in asthma. Thorax 57, 323–327.

    Article  PubMed  CAS  Google Scholar 

  41. Edmunds, A., Tooley, M., and Godfrey, S. (1978), The refractory period after exercise-induced asthma: its duration and relation to the severity of exercise. Am. Rev. Respir. Dis. 117, 247–254.

    PubMed  CAS  Google Scholar 

  42. Bar-Yishay, E., Ben-Dov, I., and Godfrey, S. (1983), Refractory period after hyperventilation-induced asthma. Am. Rev. Respir. Dis. 127, 572–574.

    PubMed  CAS  Google Scholar 

  43. Anderson, S. D. (1985), Exercise-induced asthma. The state of the art. Chest 87S, 191S-195S

    Google Scholar 

  44. Soto, M. E., Schnall, R., and Landau, L. (1985), Refractoriness to bronchoconstriction following hyperventilation with cold dry air. Pediatr. Pulmonol. 1, 80–84.

    Article  PubMed  CAS  Google Scholar 

  45. Belcher, N. G., Rees, P. J., Clark, T. J. M., and Lee, T. H. (1987), A comparison of the refactory periods induced by hypertonic airway challenge and exercise in bronchial asthma. Am. Rev. Respir. Dis. 135, 822–825.

    PubMed  CAS  Google Scholar 

  46. Daxun, Z., Rafferty, P., Richards, R., Summerell, S., and Holgate, S. T. (1989), Airway refractoriness to adenosine 5′-monophosphate after repeated inhalation. J. Allergy Clin. Immunol. 83, 152–158.

    Article  PubMed  CAS  Google Scholar 

  47. Reiss, T. F., Hill, J. B., Harman, E., Zhang, J., Tanaka, W. K., Bronsky, E., et al. (1997), Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchosphasm by montelukast, a cysteinyl leukotriene receptor antagonist. Thorax 52, 1030–1035.

    PubMed  CAS  Google Scholar 

  48. Anderson, S. D., Smith, C. M., Rodwell, L. T., du Toit, J. I., Riedler, J., and Robertson, C. F. The use of non-isotonic aerosols for evaluating bronchial hyperresponsiveness, in Provocation Challenge Procedures, Spector, S., ed. Marcel Dekker, New York, 1995, pp. 249–278.

    Google Scholar 

  49. Riedler, J., Reade, T., Dalton, M., Holst, D. I., and Robertson, C. F. (1994), Hypertonic saline challenge in an epidemiological survey of asthma in children. Am. J. Respir Crit. Care Med. 150, 1632–1639.

    PubMed  CAS  Google Scholar 

  50. Riedler, J., Gamper, A., Eder, W., and Oberfeld, G. (1998), Prevalence of bronchial hyperresponsiveness to 4.5% saline and its relation to asthma and allergy symptoms in Austrian children. Eur. Respir. J. 11, 355–360.

    Article  PubMed  CAS  Google Scholar 

  51. Rabone, S., Phoon, W. O., Anderson, S. D., Wan, K. C., Seneviratne, M., Gutierrez, L., et al. (1996), Hypertonic saline challenge in an adult epidemiological field survey. Occup. Med. 46, 177–185.

    CAS  Google Scholar 

  52. Brannan, J. D., Anderson, S. D., Koskela, H., and Subbarao, P. (2002), Inhaled mannitol does not cause bronchoconstriction in non-asthmatic healthy persons. Respirology 7, A16.

    Article  Google Scholar 

  53. Hurwitz, K. A., Argyros, G. J., Roach, J. M., Eliasson, A. H., and Phillips, Y. Y. (1995), Interpretation of eucapnic voluntary hyperventilation in the diagnosis of asthma. Chest 108, 1240–1245.

    PubMed  CAS  Google Scholar 

  54. Godfrey, S., Springer, C., Bar-Yishay, E., and Avital, A. (1999), Cut-off points defining normal and asthmatic bronchial reactivity to exercise and inhalation challenges in children and young adults. Eur. Respir. J. 14, 659–668.

    Article  PubMed  CAS  Google Scholar 

  55. O'Cain, C. F., Dowling, N. B., Slutsky, A. S., Hensley, M. J., Strohl, K. P., McFadden, E. R., et al. (1980), Airway effects of respiratory heat loss in normal subjects. J. Appl. Physiol.: Respirat. Environ. Exerc. Physiol. 49, 875–880.

    Google Scholar 

  56. Henriksen, J. M. and Dahl, R. (1983), Effects of inhaled budesonide alone and in combination with low-dose terbutaline in children with exercise-induced asthma. Am. Rev. Respir. Dis. 128, 993–997.

    PubMed  CAS  Google Scholar 

  57. Waalkans, H. J., van Essen-Zandvliet, E. E. M., Gerritsen, J., Duiverman, E. J., Kerrebijn, K. F., Knol, K., and the Dutch CNSLD Study Group (1993), The effect of an inhaled corticosteroid (budesonide) on exercise-induced asthma in children. Eur. Respir. J. 6, 652–656

    Google Scholar 

  58. Jonasson, G., Carlsen, K. H., and Hultquist, C. (2000), Low-dose budesonide improves exercise-induced bronchospasm in schoolchildren. Pediatr. Allergy Immunol. 11, 120–125.

    Article  PubMed  CAS  Google Scholar 

  59. Rodwell, L. T., Anderson, S. D., and Seale, J. P. (1992), Inhaled steroids modify bronchial responses to hyperosmolar saline. Eur. Respir. J. 5, 953–962.

    PubMed  CAS  Google Scholar 

  60. Juniper, E. F., Kline, P. A., Vanzieleghem, M. A., Ramsdale, E. H., O'Byrne, P. M., and Hargreave, F. (1990), Effect of long-term treatment with inhaled corticosteroids on airway hyperresponsiveness and clinical asthma in non-steroid dependent asthmatics. Am. Rev. Respir. Dis. 142, 832–836.

    PubMed  CAS  Google Scholar 

  61. Reddel, H. K., Jenkins, C. R., Marks, G. B., Ware, S. I., Xuan, W., Salome, C. M., et al. (2000), Optimal asthma control, starting with high doses of inhaled budesonide. Eur. Respir. J. 16, 226–235.

    Article  PubMed  CAS  Google Scholar 

  62. Sont, J. K., Willems, L. N., Bel, E. H., van Krieken, J. H., Vandenbroucke, J. P., and Sterk, P. J. (1999), Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am. J. Respir. Crit. Care Med. 159, 1043–1051.

    PubMed  CAS  Google Scholar 

  63. Dessanges, J.-F., Prefaut, C., Taytard, A., Matran, R., Naya, I., Compagnon, A., et al. (1999), The effect of zafirlukast on repetitive exercise-induced bronconstriction: the possible role of leukotrienes in exercise-induced refractoriness. J. Allergy Clin. Immunol. 1155–1166.

  64. American Thoracic Society (1995), Standardization of spirometry: 1994 update. Am. J. Respir. Crit. Care Med. 152, 1107–1136.

    Google Scholar 

  65. Anderson, S. D., Lambert, S., Brannan, J. D., Wood, R. J., Koskela, H., Morton, A. R., et al. (2001), Laboratory protocol for exercise asthma to evaluate salbutamol given by two devices. Med. Sci. Sports Exer. 33, 893–900.

    Article  CAS  Google Scholar 

  66. Anderson, S. D., Schoeffel, R. E., Follet, R., Perry, C. P., Daviskas, E., and Kendall, M. (1982), Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur. J. Respir. Dis. 63, 459–471.

    PubMed  CAS  Google Scholar 

  67. Anderson, S. D. and Daviskas, E. (2000), The mechanism of exercise-induced asthma is ....... J. Allergy Clin. Immunol. 106, 453–459.

    Article  PubMed  CAS  Google Scholar 

  68. McFadden, E. R., Lenner, K. A., and Strohl, K. P. (1986), Postexertional airway rewarming and thermally induced asthma. J. Clin. Investig. 78, 18–25.

    Article  PubMed  Google Scholar 

  69. McFadden, E. R., Nelson, J. A., Skowronski, M. E., and Lenner, K. A. (1999), Thermally induced asthma and airway drying. Am. J. Respir. Crit. Care Med. 160, 221–226.

    PubMed  Google Scholar 

  70. Anderson, S. D., Schoeffel, R. E., Black, J. L., Daviskas, E. (1985), Airway cooling as the stimulus to exercise-induced asthma—a re-evaluation. Eur. J. Respir. Dis. 67, 20–30.

    PubMed  CAS  Google Scholar 

  71. Anderson, S. D. and Daviskas, E. (1992), The airway microvasculature and exercise-induced asthma. Thorax 47, 748–752.

    PubMed  CAS  Google Scholar 

  72. Smith, C. M., Anderson, S. D., Walsh, S., and McElrea, M. (1989), An investigation of the effects of heat and water exchange in the recovery period after exercise in children with asthma. Am. Rev. Respir. Dis. 140, 598–605.

    PubMed  CAS  Google Scholar 

  73. Haby, M. M., Anderson, S. D., Peat, J. K., Mellis, C. M., Toelle, B. G., and Woolcock, A. J. (1994), An exercise challenge protocol for epidemiological studies of asthma in children: comparison with histamine challenge. Eur. Respir. J. 7, 43–49.

    Article  PubMed  CAS  Google Scholar 

  74. Bardagi, S., Agudo, A., Gonzalez, C. A., and Romero, P. V. (1993), Prevalence of exercise-induced airway narrowing in schoolchildren from a Mediterranean town. Am. Rev. Respir. Dis. 147, 1112–1115.

    PubMed  CAS  Google Scholar 

  75. Rundell, K. W., Wilber, R. L., Szmedra, L., Jenkinson, D. M., Mayers, L. B., and Im, J. (2000), Exercise-induced asthma screening of elite athletes: field vs laboratory exercise challenge. Med. Sci. Sprots Exerc. 32, 309–316.

    Article  CAS  Google Scholar 

  76. Mannix, M. T., Farber, M. O., Palange, P., Galassetti, P., and Manfredi, F. (1996), Exercise-induced asthma in figure skaters. Chest 109, 312–315.

    PubMed  CAS  Google Scholar 

  77. Provost-Craig, M. A., Arbour, K. S., Sestili, D. C., Chabalko, J. J., and Ekinci, E. (1996), The incidence of exercise-induced bronchospasm in competitive figure skaters. J. Asthma 33, 67–71.

    PubMed  CAS  Google Scholar 

  78. Nish, W. A. and Schwietz, L. A. (1992), Underdiagnosis of asthma in young adults presenting for USAF basic training. Ann. Allergy 69, 239–242.

    PubMed  CAS  Google Scholar 

  79. Sinclair, D. G., Sims, M. M., Hoad, N. A., and Winfield, C. R. (1995), Exercise-induced airway narrowing in army recruits with a history of childhood asthma. Eur. Respir. J. 8, 1314–1317.

    Article  PubMed  CAS  Google Scholar 

  80. Crapo, R. O., Casaburi, R., Coates, A. L., Enright, P. L., Hankinson, J. L., Irvin, C. G., et al. (2000), Guidelines for methacholine and exercise challenge testing—1999. Am. J. Respir. Crit. Care Med. 161, 309–329.

    PubMed  CAS  Google Scholar 

  81. Woolley, M., Anderson, S. D., and Quigley, B. (1990), Duration of protective effect of terbutaline sulphate and cromolyn sodium alone and in combination on exercise-induced asthma. Chest 97, 39–45.

    PubMed  CAS  Google Scholar 

  82. Anderson, S. D., Rodwell, L. T., Du Toit, J., and Young, I. H. (1991), Duration of protection by inhaled salmeterol in exercise-induced asthma. Chest 100 1254–1260.

    PubMed  CAS  Google Scholar 

  83. Dahlén, B., Roquet, A., Inman, M. D., Karlsson, Ö., Naya, I., Anstrén, G., et al. (2002), Influence of zafirlukast and loratadine on exercise-induced bronchoconstriction. J. Allergy Clin. Immunol. 109, 789–793.

    Article  PubMed  CAS  Google Scholar 

  84. Haby, M. M., Peat, J. K., Mellis, C. M., Anderson, S. D., and Woolcock, A. J. (1995), An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur. Respir. J. 8, 729–736.

    PubMed  CAS  Google Scholar 

  85. Backer, V., Dirksen, A., Bach-Mortensen, N., Hansen, K., Laursen, E. M., and Wendelboe, D. (1991), The distribution of bronchial responsiveness to histamine and exercise in 527 children and adolescents. J. Allergy Clin. Immunol. 88, 68–76.

    Article  PubMed  CAS  Google Scholar 

  86. Holzer, K., Anderson, S. D., Douglass, J. (2002), Exercise in elite summer athletes: Challenges for diagnoris. J. Allergy Clin. Immunol. 110(3);374–380.

    Article  PubMed  Google Scholar 

  87. Barnes, N. C., Piper, P. J., and Costello, J. F. (1984), Comparative effects of inhaled leukotriene C4, leukotriene D4, and histamine in normal human subjects. Thorax 39, 500–504.

    PubMed  CAS  Google Scholar 

  88. Roca, J., Whipp, B. J., Agustí, A. G. N., Anderson, S. D., Casaburi, R., Cotes, J. E., et al. (1997), Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Position document of the European Respiratory Society. Eur. Respir. J. 10, 2662–2689.

    Article  Google Scholar 

  89. Mannix, E. T., Manfredi, F., and Farber, M. O. (1999), A comparison of two challenge tests for identifying exercise-induced bronchospasm in figure skaters. Chest 115, 649–653.

    Article  PubMed  CAS  Google Scholar 

  90. Rundell, K. W., Im, J., Mayers, L. B., Wilber, R. L., Szmedra, L., and Schmitz, H. R. (2001), Self-reported symptoms and exercise-induced asthma in the elite athlete. Med. Sci. Sports Exerc. 33, 208–213.

    PubMed  CAS  Google Scholar 

  91. Carlsen, K. H., Engh, G., and Mørk, M. (2000), Exercise induced bronchoconstriction depends on exercise load. Respir. Med. 94, 750–755.

    Article  PubMed  CAS  Google Scholar 

  92. Gandevia, B. and Hugh Jones, P. (1957), Terminology for measurements of ventilatory capacity. Thorax 12, 290–293.

    PubMed  CAS  Google Scholar 

  93. Folgering, H., Palange, P., and Anderson, S. (1997), Clinical exercise testing with reference to lung diseases: indications and protocols. Eur. Respir. Mon. 6, 51–71.

    Google Scholar 

  94. CRC Handbook of Chemistry and Physics, 78th edition, 1997–1998, CRC Press, Inc., New York, D.R. Lide (editor-in-chief) Section 15 page 24.

  95. Malo, J. L., Cartier, A., L'Archeveque, J., Ghezzo, H., and Martin, R. R. (1986), Bronchoconstriction due to isocapnic cold air inhalation minimally influences bronchial hyperresponsiveness to methacholine in asthmatic subjects. Bull. Eur. Physiolopathol. Respir. 22, 473–477.

    CAS  Google Scholar 

  96. Zach, M., Polgar, G., Kump, H., and Kroisel, P. (1984), Cold air challenge of airway hyperreactivity in children: practical application and theoretical aspects. Pediatr. Res. 18, 469–478.

    Article  PubMed  CAS  Google Scholar 

  97. O'Byrne, P. M., Ryan, G., Morris, M., McCormack, D., Jones, N. L., Morse, J. L., et al. (1982), Asthma induced by cold air and its relation to nonspecific bronchial hyperresponsiveness to methacholine. Am. Rev. Respir. Dis. 125, 281–285.

    PubMed  Google Scholar 

  98. Deal, E. C., McFadden, E. R., Ingram, R. H., and Jaeger, J. J. (1979), Hyperpnea and heat flux: initial reaction sequence in exercise-induced asthma. J. Appl. Physiol.: Respirat. Environ. Exerc. Physiol. 46, 476–483.

    Google Scholar 

  99. Jones, N. L. Clinical Exercise Testing, 4th ed., W.B. Saunders, Philadelphia, 1997.

    Google Scholar 

  100. Anderson, S. D. (1984), A simple guide to clinical exercise testing. Aust. NZ J. Med. 14, 803–806.

    CAS  Google Scholar 

  101. Godfrey, S.. Exercise Testing in Children. W.B. Saunders, London, 1974.

    Google Scholar 

  102. Brudno, D. S., Wagner, J. M., and Rupp, N. T. (1994), Length of postexercise assessment in the determination of exercise-induced bronchospasm. Ann. Allergy 73, 227–231.

    PubMed  CAS  Google Scholar 

  103. Crapo, R. O., Morris, A. H., and Gardner, R. M. (1981), Reference spirometric values using techniques and equipment that meet ATS recommendations. Am. Rev. Respir. Dis. 123, 659–664.

    PubMed  CAS  Google Scholar 

  104. Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., and Yernault, J. C. (1993), Lung volumes and forced ventilatory flows. Eur. Respir. J. 6, 5–40.

    Google Scholar 

  105. Anderson, S. D., Seale, J. P., Ferris, L., Schoeffel, R. E., and Lindsay, D. A. (1979), An evaluation of pharmacotherapy for exercise-induced asthma. J. Allergy Clin. Immunol. 64, 612–624.

    Article  PubMed  CAS  Google Scholar 

  106. Dahlén, B., O'Byrne, P. M., Watson, R. M., Roquet, A., Larsen, F., and Inman, M. D. (2001), The reproducibility and sample size requirements of exercise-induced bronchoconstriction measurements. Eur. Respir. J. 17, 581–588.

    Article  PubMed  Google Scholar 

  107. Hofstra, W. B., Sont, J. K., Sterk, P. J., Neijens, H. J., Kuethe, M. C., and Duiverman, E. J. (1997), Sample size estimation in studies monitoring exercise-induced bronchoconstriction in asthmatic children. Thorax 52, 739–741.

    Article  PubMed  CAS  Google Scholar 

  108. Nicolai, T., Mutius, E. V., Reitmeir, P., and Wjst, M. (1993), Reactivity to cold-air hyperventilation in normal and in asthmatic children in a survey of 5,697 schoolchildren in southern Bavaria. Am. Rev. Respir. Dis. 147, 565–572.

    PubMed  CAS  Google Scholar 

  109. Anderson, S. D. and Holzer, K. (2000), Exercise-induced asthma: is it the right diagnosis in elite athletes?. J. Allergy Clin. Immunol. 106, 419–428.

    Article  PubMed  CAS  Google Scholar 

  110. Rosenthal, R. R. (1984), Simplified eucapnic voluntary hyperventilation. J. Allergy Clin. Immunol. 73, 676–685.

    Article  PubMed  CAS  Google Scholar 

  111. Eliasson, A. H., Phillips, Y. Y., and Rajagopal, K. R. (1992), Sensitivity and specificity of bronchial provocation testing. An evaluation of four techniques in exercise-induced bronchospasm. Chest 102, 347–355.

    PubMed  CAS  Google Scholar 

  112. Anderson, S. D., Argyros, G. J., Magnussen, H., and Holzer, K. (2001), Provocation by eucapnic voluntary hyperpnoea to identify exercise-induced bronchoconstriction. Br. J. Sports Med. 35, 344–347.

    Article  PubMed  CAS  Google Scholar 

  113. Zeballos, R. J., Shturman-Ellestien, R., McNall, J. F., Hirsch, J. E., and Souhrada, J. F. (1978), The role of hyperventilation in exercise-induced bronchoconstriction. Am. Rev. Respir. Dis. 118, 877–884.

    PubMed  CAS  Google Scholar 

  114. Smith, C. M. and Anderson, S. D. (1986), Hyperosmolarity as the stimulus to asthma induced by hyperventilation? J. Allergy Clin. Immunol. 77, 729–736.

    Article  PubMed  CAS  Google Scholar 

  115. Smith, C. M. and Anderson, S. D. (1989), A comparison between the airway response to isocapnic hyperventilation and hypertonic saline in subjects with asthma. Eur. Respir. J. 2, 36–43.

    PubMed  CAS  Google Scholar 

  116. Argyros, G. J., Phillips, Y. Y., Rayburn, D. B., Rosenthal, R. R., and Jaeger, J. J. (1993), Water loss without heat flux in exercise-induced bronchospasm. Am. Rev. Respir. Dis. 147, 1419–1424.

    PubMed  CAS  Google Scholar 

  117. Assoufi, B. K., Dally, M. B., Newman-Taylor, A. J., and Denison, D. M. (1986), Cold air test: a simplified standard method for airway reactivity. Bull. Eur. Physiopathol. Respir. 22, 349–357.

    PubMed  CAS  Google Scholar 

  118. Blackie, S. P., Hilliam, C., Village, R., and Pare, P. D. (1990), The time course of bronchoconstriction in asthmatics during and after isocapnic hyperventilation. Am. Rev. Respir. Dis. 142, 1133–1136.

    PubMed  CAS  Google Scholar 

  119. Smith, C. M., Anderson, S. D., and Seale, J. P. (1988), The duration of action of the combination of fenoterol hydrobromide and ipratropium bromide in protecting against asthma provoked by hyperpnea. Chest 94, 709–717.

    PubMed  CAS  Google Scholar 

  120. Latimer, K. M., O'Byrne, P. M., Morris, M. M., Roberts, R., and Hargreave, F. E. (1983), Bronchoconstriction stimulated by airway cooling. Better protection with combined inhalation of terbutaline sulphate and cromolyn sodium than with either alone. Am. Rev. Respir. Dis. 128, 440–443.

    PubMed  CAS  Google Scholar 

  121. Argyros, G. J., Roach, J. M., Hurwitz, K. M., Eliasson, A. H., and Phillips, Y. Y. (1995), The refractory period after eucapnic voluntary hyperventilation challenge and its effect on challenge technique. Chest 108, 419–424.

    PubMed  CAS  Google Scholar 

  122. Argyros, G. J., Roach, J. M., Hurwitz, K. M., Eliasson, A. H., and Phillips, Y. Y. (1996), Eucapnic voluntary hyperventilation as a bronchoprovocation technique. Development of a standardized dosing schedule in asthmatics. Chest 109, 1520–1524.

    PubMed  CAS  Google Scholar 

  123. Nielsen, K. G. and Bisgaard, H. (2000), Lung function response to cold air challenge in asthmatic and healthy children of 2–5 years of age. Am. J. Respir. Crit. Care Med. 161, 1805–1809.

    PubMed  CAS  Google Scholar 

  124. Rodwell, L. T., Anderson, S. D., du Toit, J., and Seale, J. P. (1993), Different effects of inhaled amiloride and furosemide on airway responsiveness to dry air challenge in asthmatic subjects. Eur. Respir. J. 6, 855–861.

    PubMed  CAS  Google Scholar 

  125. Koskela, H. and Tukiainen, H. (1995), Facial cooling, but not nasal breathing of cold air, induces bronchoconstriction: a study in asthmatic and healthy subjects. Eur. Respir. J. 8, 2088–2093.

    Article  PubMed  CAS  Google Scholar 

  126. Koskela, H. O., Räsänen, S. H. and Tukiainen, H. O. (1997), The diagnostic value of cold air hyperventilation in adults with suspected asthma. Respir. Med. 91, 470–478.

    Article  PubMed  CAS  Google Scholar 

  127. Ramsdale, E. H. Morris, M. M., Roberts, R. S., and Hargreave, F. E. (1984), Bronchial responsiveness to methacholine in chronic bronchitis: relationship to airflow limitation and cold air responsiveness. Thorax 39, 912–918.

    PubMed  CAS  Google Scholar 

  128. Deal, E. C., McFadden, E. R., Ingram, R. H., Breslin, F., and Jaeger, J. J. (1980), Airway responsiveness to cold air and hyperpnea in normal subjects and in those with hay fever and asthma. Am. Rev. Respir. Dis. 121, 621–628.

    PubMed  Google Scholar 

  129. Weiss, S. T., Tager, I. B., Weiss, J. W., Munoz, A., Speizer, F. E., and Ingram, R. H., (1984), Airways responsiveness in a population sample of adults and children. Am. Rev. Respir. Dis. 129, 898–902.

    PubMed  CAS  Google Scholar 

  130. Schoeffel, R. E., Anderson, S. D., and Altounyan, R. E. (1981), Bronchial hyperreactivity in response to inhalation of ultrasonically nebulised solutions of distilled water and saline. Br. Med. J. 283, 1285–1287.

    CAS  Google Scholar 

  131. Smith, C. M. and Anderson, S. D. (1989) Inhalation provocation tests using non-isotonic aerosols. J. Allergy Clin. Immunol. 84, 781–790.

    Article  PubMed  CAS  Google Scholar 

  132. Riedler, J., Reade, T., and Robertson, C. F. (1994), Repeatability of response to hypertonic saline aerosol in children with mild to severe asthma. Pediatr. Pulmonol. 18, 330–336.

    Article  PubMed  CAS  Google Scholar 

  133. Riedler, J. and Robertson, C. F. (1994), Effect of tidal volume on the output and particle size distribution of hypertonic saline from an ultrasonic nebuliser. Eur. Respir. J. 7, 998–1002.

    PubMed  CAS  Google Scholar 

  134. in't Veen, J. C. C. M., de Gouw, H. W. F. M., Smits, H. H., Sont, J. K., Hiemstra, P. S., Sterk, P. J., et al. (1996), Repeatability of cellular and soluble markers of inflammation in induced sputum from patients with asthma. Eur. Respir. J. 9, 2441–2447.

    Article  Google Scholar 

  135. Gibson, P. G., Wooley, K. L., Carty, K., MurreeAllen, K., and Saltos, N. (1998), Induced sputum eosinophil cationic protein (ECP) measurement in asthma and COPD. Clin. Exp. Allergy 28, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  136. Gibson, P. G., Saltos, N., and Borgas, T. (2000), Airway mast cells and eosinophils correlate with clinical severity and airway hyperresponsiveness in corticosteroid-treated asthma. J. Allergy Clin. Immunol. 105, 752–759.

    Article  PubMed  CAS  Google Scholar 

  137. Anderson, S. D. and Schoeffel, R. E.. The inhalation of ultrasonically nebulized aerosols as a provocation test for asthma, in Airway Responsiveness: Measurement and Interpretation. Hargreave, F. E., Woolcock A. J., ed., Astra Pharmaceuticals Canada Ltd, Ontario, Canada, 1985, pp. 39–50.

    Google Scholar 

  138. Brannan, J. D., Koskela, H., Anderson, S. D., and Chan, H. K., (1998), Inhaled corticosteroids reduce airway responsiveness to inhaled mannitol: a pilot study. Am. J. Respir. Crit. Care Med. 157, A407.

    Google Scholar 

  139. Barben, J., Roberts, M., Carlin, J. B., and Robertson, C. F. (2001), Repeatability of bronchial responsiveness to mannitol dry powder in children with asthma. Eur. Respir. J. 18, 493s.

    Google Scholar 

  140. Subbarao, P., Brannan, J. D., Ho, B., Anderson, S. D., Chan, H.-K., and Coates, A. L. (2000), Inhaled mannitol identifies methacholine-responsive children with active asthma. Pediatr. Pulmonol. 29, 291–298.

    Article  PubMed  CAS  Google Scholar 

  141. Gonda, I. (1986), Pharmaceutical developments in therapeutic and diagnostic aerosols. Pharm. Tech. Japan 2, 883–893.

    Google Scholar 

  142. O'Connor, G., Sparrow, D., Taylor, D., Segal, M., and Weiss, S. (1991), Analysis of dose-response curves to methacholine. An approach suitable for population studies. Am. Rev. Respir. Dis. 144, 663–667.

    Google Scholar 

  143. Peat, J. K., Salome, C. M., Berry, G., and Woolcock, A. J. (1992), Relation of dose-response slope to respiratory symptoms and lung function in a population study of adults living in Busselton, Western Australia. Am. Rev. Respir. Dis. 146, 860–865.

    PubMed  CAS  Google Scholar 

  144. Lis, G. and Pietrzyk, J. J. (1998), Response-dose ratio as an index of bronchial responsiveness to hypertonic saline in an epidemiological survey of asthma in Polish children. Pediatr. Pulmonol. 25, 375–382.

    Article  PubMed  CAS  Google Scholar 

  145. Leuppi, J. D., Salome, C. M., Jenkins, C. R., Anderson, S. D., Xuan, W., Marks, G. B., et al. (2001), Predictive markers of asthma exacerbations during stepwise dose-reduction of inhaled corticosteroids. Am. J. Respir. Crit. Care Med. 163, 406–412.

    PubMed  CAS  Google Scholar 

  146. O'Hickey, S. P., Arm, J. P., Rees, P. J., and Lee, T. H. (1989), Airway responsiveness to methacholine after inhalation of nebulized hypertonic saline in bronchial asthma. J. Allergy Clin. Immunol. 83, 472–476.

    Article  PubMed  Google Scholar 

  147. Rodwell, L. T., Anderson, S. D., Spring, J. F., Seale, J. P. (1993), Indomethacin & airway responsiveness to repeated 4.5% NaCl challenges. Eur. Respir. J. 6 (suppl 17), 200s.

    Google Scholar 

  148. Anderson, S. D., Brannan, J., Trevillion, L., and Young, I. H. (1995), Lung Function and Bronchial Provocation Tests for intending divers with a history of asthma. SPUMS 25, 233–248.

    Google Scholar 

  149. Wilson, N. M., Bridge, P., and Silverman, M. (1995), Bronchial responsiveness and symptoms in 5–6 year old children: a comparison of a direct and indirect challenge. Thorax 50, 339–345.

    PubMed  CAS  Google Scholar 

  150. Gibson, P. G., Hargreave, F. E., Girgis-Gabardo, A., Morris, M., Denburg, J. A., and Dolovich, J. (1995), Chronic cough with eosinophilic bronchitis examination for variable airflow obstruction and response to corticosteroid. Clin. Exp. Allergy 25, 127–132.

    Article  PubMed  CAS  Google Scholar 

  151. Bjorck, T., Gustafsson, L. E., and Dahlen, S. E. (1992), Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am. Rev. Respir. Dis. 145, 1087–1091.

    PubMed  CAS  Google Scholar 

  152. Avital, A., Springer, C., Bar-Yishay, E., and Godfrey, S. (1995), Adenosine, methacholine, and exercise challenges in children with asthma or paediatric chronic obstructive pulmonary disease. Thorax 50, 511–516.

    PubMed  CAS  Google Scholar 

  153. Hancox, R. J., Subbarao, P., Kamada, D., Watson, R. M., Hargreave, F. E., and Inman, M. D. (2002), B2-agonist tolerance and exercise-induced bronchospasm. Am. J. Respir. Crit. Care Med. 165, 1068–1070.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, S.D., Brannan, J.D. Methods for “Indirect” challenge tests including exercise, eucapnic voluntary hyperpnea, and hypertonic aerosols. Clinic Rev Allerg Immunol 24, 27–54 (2003). https://doi.org/10.1385/CRIAI:24:1:27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CRIAI:24:1:27

Index Entries

Navigation