Skip to main content
Log in

Technique to Determine Inspiratory Impedance during Mechanical Ventilation: Implications for Flow Limited Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present the design of an enhanced ventilator waveform (EVW) for routine measurement of inspiratory resistance (R) and elastance (E) spectra in ventilator-dependent and/or severely obstructed flow-limited patients. The EVW delivers an inspiratory tidal volume of fresh gas with a flow pattern consisting of multiple sinusoids from 0.156 to 8.1 Hz and permits a patient-driven exhalation to the atmosphere or positive end-expiratory pressure. Weighted least-squares estimates of the coefficients in a sinusoidal series approximation of the EVW inspirations yielded inspiratory R and E spectra. We first validated the EVW approach using simulated pressure and flow data under different physiological conditions, noise levels, and harmonic distortions. We then applied the EVW in four intubated patients during anesthesia and paralysis: two with mild airway obstruction and two with severe emphysema and flow limitation. While the level of inspiratory R was similar in both groups of patients, the inspiratory E of the emphysematous patients demonstrated a pronounced frequency-dependent increase consistent with severe peripheral airway obstruction. We conclude that the EVW offers a potentially practical and efficient approach to monitor lung function in ventilator-dependent patients, especially those with expiratory flow limitation. © 1999 Biomedical Engineering Society.

PAC99: 8719Uv, 8780-y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Barnas, G. M., P. Harinath, M. D. Green, B. Suki, D. W. Kaczka, and K. R. Lutchen. Influence of waveform and analysis technique on lung and chest wall properties. Respir. Physiol. 96:331–344, 1994.

    Google Scholar 

  2. Bates, J. H. T., P. Baconnier, and J. Milic-Emili. A theoretical analysis of interrupter technique for measuring respiratory mechanics. J. Appl. Physiol. 64:2204–2214, 1988.

    Google Scholar 

  3. Bates, J. H. T., and A.-M. Lauzon. A nonstatistical approach to estimating confidence intervals about model parameters: Application to respiratory mechanics. IEEE Trans. Biomed. Eng. 39:94–100, 1992.

    Google Scholar 

  4. D'Angelo, E., F. M. Robatto, E. Calderini, M. Tavola, D. Bono, G. Torri, and J. Milic-Emili. Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J. Appl. Physiol. 70:2602–2610, 1991.

    Google Scholar 

  5. Daroczy, B., and Z. Hantos. An improved forced oscillatory estimation of respiratory impedance. Int. J. Bio-Med. Comput. 13:221–235, 1982.

    Google Scholar 

  6. Dayman, H. Mechanics of airflow in health and emphysema. J. Clin. Invest. 30:1175–1190, 1951.

    Google Scholar 

  7. Fahy, B. G., G. M. Barnas, J. L. Flowers, S. E. Nagle, and M. Agarwal. Effects of PEEP on respiratory mechanics are tidal volume and frequency dependent. Respir. Physiol. 109:53–64, 1997.

    Google Scholar 

  8. Fredberg, J. J. Augmented diffusion in the airways can support pulmonary gas exchange. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 49:232–238, 1980.

    Google Scholar 

  9. Fry, D. L., R. V. Ebert, W. W. Stead, and C. C. Brown. The mechanics of pulmonary ventilation in normal subjects and in patients with emphysema. Am. J. Med. 16:80–97, 1954.

    Google Scholar 

  10. Grimby, G., T. Takishima, W. Graham, P. Macklem, and J. Mead. Frequency dependence of flow resistance in patients with obstructive lung disease. J. Clin. Invest. 47:1455–1465, 1968.

    Google Scholar 

  11. Harf, A., R. Le Gall, and H. K. Chang. Mechanical ventilation with superimposed high frequency oscillation in the normal rat. Respir. Physiol. 54:31–40, 1983.

    Google Scholar 

  12. Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66:51–83, 1978.

    Google Scholar 

  13. Kaczka, D. W., G. M. Barnas, B. Suki, and K. R. Lutchen. Assessment of time-domain analyses for estimation of lowfrequency respiratory mechanical properties and impedance spectra. Ann. Biomed. Eng. 23:135–151, 1995.

    Google Scholar 

  14. Kaczka, D. W., E. P. Ingenito, B. Suki, and K. R. Lutchen. Partitioning airway and lung tissue resistances in humans: Effects of bronchoconstriction. J. Appl. Physiol. 82:1531–1541, 1997.

    Google Scholar 

  15. Kincaid, D., and W. Cheney. Numerical Analysis: Mathematics of Scientific Computing. Pacific Grove, CA: Brooks/Cole, 1991.

    Google Scholar 

  16. Lorino, A. M., H. Lorino, and A. Harf. A synthesis of the Otis, Mead, and Mount mechanical respiratory models. Respir. Physiol. 97:123–133, 1994.

    Google Scholar 

  17. Lutchen, K. R., and H. Gillis. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J. Appl. Physiol. 83:1192–1201, 1997.

    Google Scholar 

  18. Lutchen, K. R., and A. C. Jackson. Statistical measures of parameter estimates from models fit to respiratory impedance data: Emphasis on joint variabilities. IEEE Trans. Biomed. Eng. 33:1000–1009, 1986.

    Google Scholar 

  19. Lutchen, K. R., D. W. Kaczka, B. Suki, G. Barnas, G. Cevenini, and P. Barbini. Low-frequency respiratory mechanics using ventilator-driven forced oscillations. J. Appl. Physiol. 75:2549–2560, 1993.

    Google Scholar 

  20. Lutchen, K. R., K. Yang, D. W. Kaczka, and B. Suki. Optimal ventilation waveforms for estimating low-frequency respiratory impedance. J. Appl. Physiol. 75:478–488, 1993.

    Google Scholar 

  21. Mead, J. Contribution of compliance of airways to frequency-dependent behavior of lungs. J. Appl. Physiol. 26:670–673, 1969.

    Google Scholar 

  22. Mead, J., I. Lindgren, and E. A. Gaensler. The mechanical properties of the lungs in emphysema. J. Clin. Invest. 34:1005–1016, 1955.

    Google Scholar 

  23. Michaelson, E. D., E. D. Grassman, and W. Peters. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest. 56:1210–1230, 1975.

    Google Scholar 

  24. Navajas, D., R. Farre, J. Canet, M. Rotger, and J. Sanchis. Respiratory input impedance in anesthetized paralyzed patients. J. Appl. Physiol. 69:1372–1379, 1990.

    Google Scholar 

  25. Navalesi, P., P. Hernandez, D. Laporta, J. S. Landry, F. Maltais, D. Navajas, and S. B. Gottfried. Influence of site of tracheal pressure measurement on in situ estimation of endotracheal tube resistance. J. Appl. Physiol. 77:2899–2906, 1994.

    Google Scholar 

  26. Norton, J. P. An Introduction to Identification. London, UK: Academic, 1986.

    Google Scholar 

  27. Oppenheim, A. V., and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

    Google Scholar 

  28. Peslin, R., J. Felico de Silva, F. Chabot, and C. Duvivier. Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. Eur. Respir. J. 5:871–878, 1992.

    Google Scholar 

  29. Petak, F., Z. Hantos, A. Adamicza, and B. Daroczy. Partitioning of pulmonary impedance: Modeling vs alveolar capsule approach. J. Appl. Physiol. 75:513–521, 1993.

    Google Scholar 

  30. Schuessler, T. F., and J. H. T. Bates. A computer-controlled research ventilator for small animals: Design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.

    Google Scholar 

  31. Suki, B. Nonlinear phenomena in respiratory mechanical measurements. J. Appl. Physiol. 74:2574–2584, 1993.

    Google Scholar 

  32. Suki, B., and K. R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: Applications to respiratory mechanics. IEEE Trans. Biomed. Eng. 39:1142–1151, 1992.

    Google Scholar 

  33. Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: A nonlinear block-structured modeling approach. J. Appl. Physiol. 79:660–671, 1995.

    Google Scholar 

  34. Tawfik, B., and H. K. Chang. A nonlinear model of respiratory mechanics in emphysematous lungs. Ann. Biomed. Eng. 16:159–174, 1988.

    Google Scholar 

  35. Valta, P., C. Corbeil, A. Lavoie, R. Campodonico, N. Koulouris, M. Chasse, J. Braidy, and J. Milic-Emili. Detection of expiratory flow limitation during mechanical ventilation. Am. J. Resp. Crit. Care Med. 150:1311–1317, 1994.

    Google Scholar 

  36. Yuan, H., B. Suki, and K. R. Lutchen. Sensitivity analysis for evaluating nonlinear models of lung mechanics. Ann. Biomed. Eng. 26:230–241, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczka, D.W., Ingenito, E.P. & Lutchen, K.R. Technique to Determine Inspiratory Impedance during Mechanical Ventilation: Implications for Flow Limited Patients. Annals of Biomedical Engineering 27, 340–355 (1999). https://doi.org/10.1114/1.146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.146

Navigation