Semin Respir Crit Care Med 2005; 26(2): 142-153
DOI: 10.1055/s-2005-869535
Published by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Pathogenesis of COPD

John R. Spurzem1 , Stephen I. Rennard1
  • 1Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska
Further Information

Publication History

Publication Date:
27 April 2005 (online)

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized and defined by limitation of expiratory airflow. This can result from several types of anatomical lesions, including loss of lung elastic recoil and fibrosis and narrowing of small airways. Inflammation, edema, and secretions also contribute variably to airflow limitation. Smoking can cause COPD through several mechanisms. First, smoke is a powerful inducer of an inflammatory response. Inflammatory mediators, including oxidants and proteases, are believed to play a major role in causing lung damage. Smoke can also alter lung repair responses in several ways. Inhibition of repair may lead to tissue destruction that characterizes emphysema, whereas abnormal repair can lead to the peribronchiolar fibrosis that causes airflow limitation in small airways. Genetic factors likely play a major role and probably account for much of the heterogeneity susceptibility to smoke and other factors. Many factors may play a role, but to date, only α-1 protease inhibitor deficiency has been unambiguously identified. Exposures other than cigarette smoke can contribute to the development of COPD. Inflammation of the lower respiratory tract that results from asthma or other chronic disorders may also contribute to the development of fixed airway obstruction.

COPD is not only a disease of the lungs but is also a systemic inflammatory disorder. Muscular weakness, increased risk for atherosclerotic vascular disease, depression, osteoporosis, and abnormalities in fluids and electrolyte balance may all be consequences of COPD.

Advances in understanding the pathogenesis of COPD have the potential for identifying new therapeutic targets that could alter the natural history of this devastating disorder.

REFERENCES

  • 1 Pauwels R A, Buist A S, Calverley P M, Jenkins C R, Hurd S S. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary.  Am J Respir Crit Care Med. 2001;  163 1256-1276
  • 2 Niewoehner D E, Sobonya R E. Structure-function correlations in chronic obstructive pulmonary disease. In: Baum GL, Wolinsky E Textbook of Pulmonary Diseases. Vol 2 Boston; Little, Brown 1994: 973-993
  • 3 Rennard S I, Daughton D M. Cigarette smoking and disease. In: Elias JA, Fishman JA, Grippi MA, Kaiser LR, Senior RM Pulmonary Diseases and Disorders New York; McGraw Hill 1998: 697-708
  • 4 Silverman E K. Genetics of chronic obstructive pulmonary disease.  Novartis Found Symp. 2001;  234 45-58
  • 5 Buist A S, Vollmer W M. Smoking and other risk factors. In: Murray JF, Nadel JA Textbook of Respiratory Medicine Philadelphia; WB Saunders 1994: 1259-1287
  • 6 Wouters E F, Creutzberg E C, Schols A M. Systemic effects in COPD.  Chest. 2002;  121 127S-130S
  • 7 Thompson A B, Daughton D, Robbins R A, Ghafouri M A, Oehlerking M, Rennard S I. Intraluminal airway inflammation in chronic bronchitis: characterization and correlation with clinical parameters.  Am Rev Respir Dis. 1989;  140 1527-1537
  • 8 Thompson A B, Mueller M B, Heires A J et al.. Aerosolized beclamethasone in chronic bronchitis: improved pulmonary function and diminished airway inflammation.  Am Rev Resp Dis. 1992;  146 389-395
  • 9 Saetta M, Di Stefano A, Maestrelli P et al.. Airway eosinophilia and expression of interleukin-5 protein in asthma and in exacerbations of chronic bronchitis.  Clin Exp Allergy. 1996;  26 766-774
  • 10 Hogg J C, Chu F, Utokaparch S et al.. The nature of small-airway obstruction in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 2645-2653
  • 11 Saetta M. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis.  Am Rev Respir Dis. 1993;  147 301-306
  • 12 O'Shaughnessy T C, Ansari T W, Barnes N C, Jeffery P K. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8 + T lymphocytes with FEV1 .  Am J Crit Care Med. 1997;  155 852-857
  • 13 Saetta M, Baraldo S, Corbino L et al.. CD8 + ve cells in the lungs of smokers with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 711-717
  • 14 Saetta M, Baraldo S, Turato G et al.. Increased proportion of CD8 + T-lymphocytes in the paratracheal lymph nodes of smokers with mild COPD.  Sarcoidosis Vasc Diffuse Lung Dis. 2003;  20 28-32
  • 15 Lams B E, Sousa A R, Rees P J, Lee T H. Subepithelial immunopathology of the large airways in smokers with and without chronic obstructive pulmonary disease.  Eur Respir J. 2000;  15 512-516
  • 16 Grumelli S, Corry D B, Song L Z et al.. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema.  Plos Med. 2004;  1 e8
  • 17 Grashoff W FH, Sont J K, Sterk P J et al.. Chronic obstructive pulmonary disease: role of bronchiolar mast cells and macrophages.  Am J Pathol. 1997;  151 1785-1790
  • 18 Kalenderian R, Raju L, Roth W, Schwartz L B, Gruber B, Janoff A. Elevated histamine and tryptase levels in smokers' bronchoalveolar lavage fluid: do lung mast cells contribute to smokers' emphysema?.  Chest. 1988;  94 119-123
  • 19 Lacoste J Y, Bousquet J, Chanez P et al.. Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease.  J Allergy Clin Immunol. 1993;  92 537-548
  • 20 Rutgers S R, Timens W, Kaufmann H F, van der Mark T W, Koeter G H, Postma D S. Comparison of induced sputum with bronchial wash, bronchoalveolar lavage and bronchial biopsies in COPD.  Eur Respir J. 2000;  15 109-115
  • 21 Hargreave F E, Leigh R. Induced sputum, eosinophilic bronchitis, and chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 S53-S57
  • 22 Louis R E, Cataldo D, Buckley M G et al.. Evidence of mast-cell activation in a subset of patients with eosinophilic chronic obstructive pulmonary disease.  Eur Respir J. 2002;  20 325-331
  • 23 Brightling C E, Monteiro W, Ward R et al.. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial.  Lancet. 2000;  356 1480-1485
  • 24 Piquette C A, Rennard S I, Snider G L. Chronic bronchitis and emphysema. In: Murray JF, Nadel JA Textbook of Respiratory Medicine. Vol 2 Philadelphia; WB Saunders 2000: 1187-1245
  • 25 Niewoehner D E, Kleinerman J, Rice D B, Div M. Pathologic changes in the peripheral airways of young cigarette smokers.  N Engl J Med. 1974;  291 755-758
  • 26 Skold C M, Hed J, Eklund A. Smoking cessation rapidly reduces cell recovery in bronchoalveolar lavage, while alveolar macrophage fluorescence remains high.  Chest. 1992;  101 989-995
  • 27 Turato G, Di Stefano A, Maestrelli P et al.. Effect of smoking cessation on airway inflammation in chronic bronchitis.  Am J Respir Crit Care Med. 1995;  152 1262-1267
  • 28 Rutgers S R, Postma D S, ten Hacken N H et al.. Ongoing airway inflammation in patients with COPD who do not currently smoke.  Thorax. 2000;  55 12-18
  • 29 Buist A S, Sexton G J, Nagy J M, Ross B B. The effect of smoking cessation and modification on lung function.  Am Rev Respir Dis. 1976;  114 115-122
  • 30 Anthonisen N R, Connett J E, Kiley J P et al.. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1 .  JAMA. 1994;  272 1497-1505
  • 31 Balbi B. COPD: is chemotaxis the key?.  Chest. 2003;  123 983-986
  • 32 Traves S L, Culpitt S V, Russell R E, Barnes P J, Donnelly L E. Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD.  Thorax. 2002;  57 590-595
  • 33 Keatings V M, Collins P D, Scott D M, Barnes P J. Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma.  Am J Respir Crit Care Med. 1996;  153 530-534
  • 34 Beeh K M, Beier J, Kornmann O, Mander A, Buhl R. Long-term repeatability of induced sputum cells and inflammatory markers in stable, moderately severe COPD.  Chest. 2003;  123 778-783
  • 35 de Boer W I, Sont J K, van Schadewijk A, Stolk J, van Krieken J H, Hiemstra P S. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD.  J Pathol. 2000;  190 619-626
  • 36 Saetta M, Mariani M, Panina-Bordignon P et al.. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2002;  165 1404-1409
  • 37 Tanino M, Betsuyaku T, Takeyabu K et al.. Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema.  Thorax. 2002;  57 405-411
  • 38 Pesci A, Balbi B, Majori M et al.. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease.  Eur Respir J. 1998;  12 380-386
  • 39 Pryzwansky K B, Wyatt T A, Lincoln T M. Cyclic guanosine monophosphate-dependent protein kinase is targeted to intermediate filaments and phosphorylates vimentin in A23187-stimulated human neutrophils.  Blood. 1995;  85 222-230
  • 40 Laudanna C, Campbell J J, Butcher E C. Elevation of intracellular cAMP inhibits RhoA activation and integrin-dependent leukocyte adhesion induced by chemoattractants.  J Biol Chem. 1997;  272 24141-24144
  • 41 Culpitt S V, de Matos C, Russell R E, Donnelly L E, Rogers D F, Barnes P J. Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2002;  165 1371-1376
  • 42 Rennard S I, Thompson A, Daughton D et al.. Theophylline reduces neutrophil recruitment in vitro and lowers airway neutrophilia in chronic bronchitis in vivo.  Eur Respir J. 1990;  3 116S
  • 43 Vignola A M. PDE4 inhibitors in COPD: a more selective approach to treatment.  Respir Med. 2004;  98 495-503
  • 44 Page K, Li J, Zhou L et al.. Regulation of airway epithelial cell NF-kappa B-dependent gene expression by protein kinase C delta.  J Immunol. 2003;  170 5681-5689
  • 45 Monick M, Staber J, Thomas K, Hunninghake G. Respiratory syncytial virus infection results in activation of multiple protein kinase C isoforms leading to activation of mitogen-activated protein kinase.  J Immunol. 2001;  166 2681-2687
  • 46 Monick M M, Hunninghake G W. Second messenger pathways in pulmonary host defense.  Annu Rev Physiol. 2003;  65 643-667
  • 47 Romberger D J, Bodlak V, Von Essen S G, Mathisen T, Wyatt T A. Hog barn dust extract stimulates IL-8 and IL-6 release in human bronchial epithelial cells via PKC activation.  J Appl Physiol. 2002;  93 289-296
  • 48 Wyatt T A, Heires A J, Sanderson S D, Floreani A A. Protein kinase C activation is required for cigarette smoke-enhanced C5a-mediated release of interleukin-8 in human bronchial epithelial cells.  Am J Respir Cell Mol Biol. 1999;  21 283-288
  • 49 Floreani A A, Wyatt T A, Stoner J et al.. Smoke and C5a induce airway epithelial intercellular adhesion molecule-1 and cell adhesion.  Am J Respir Cell Mol Biol. 2003;  29 472-482
  • 50 Zheng T, Zhu Z, Wang Z et al.. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema.  J Clin Invest. 2000;  106 1081-1093
  • 51 Wang Z, Zheng T, Zhu Z et al.. Interferon gamma induction of pulmonary emphysema in the adult murine lung.  J Exp Med. 2000;  192 1587-1600
  • 52 Laurell C B, Eriksson S. The electrophoretic alpha 1-globulin pattern of serum in alpha 1-antitrypsin deficiency.  Scand J Clin Lab Invest. 1963;  15 132-140
  • 53 Gross P, Babjak M, Tolker E et al.. Enzymatically produced pulmonary emphysema: A preliminary report.  J Occup Med. 1964;  6 481-484
  • 54 Janoff A, Sloan B, Weinbaum G et al.. Experimental emphysema induced with purified human neutrophil elastase: tissue localization of the instilled protease.  Am Rev Resp Dis. 1977;  115 461-478
  • 55 Senior R M, Tegner H, Kuhn C, Ohlsson K, Starcher B C, Pierce J A. The induction of pulmonary emphysema with human leukocyte elastase.  Am Rev Resp Dis. 1977;  116 469-475
  • 56 Nolte S, Skov P S. Inhibition of basophil histamine release by methotrexate.  Agents Actions. 1988;  23 173-176
  • 57 Travis J. Structure, function and control of neutrophil proteinases.  Am J Med. 1988;  84 37-43
  • 58 Shapiro S D, Senior R M. Matrix metalloproteinases: matrix degradation and more.  Am J Respir Cell Mol Biol. 1999;  20 1100-1102
  • 59 Chapman H, Riese R, Shi G. Emerging roles for cysteine proteases in human biology.  Annu Rev Physiol. 1997;  59 63-88
  • 60 Takeyabu K, Betsuyaku T, Nishimura M et al.. Cysteine proteinases and cystatin C in bronchoalveolar lavage fluid from subjects with subclinical emphysema.  Eur Respir J. 1998;  12 1033-1039
  • 61 Segura-Valdez L, Pardo A, Gaxiola M, Uhal B D, Becerril C, Selman M. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD.  Chest. 2000;  117 684-694
  • 62 Fujita J, Nelson N L, Daughton D M et al.. Evaluation of elastase and antielastase balance in patients with bronchitis and pulmonary emphysema.  Am Rev Respir Dis. 1990;  142 57-62
  • 63 Cataldo D, Munaut C, Noel A et al.. MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease.  Int Arch Allergy Immunol. 2000;  123 259-267
  • 64 Montano M, Beccerril C, Ruiz V, Ramos C, Sansores R H, Gonzalez-Avila G. Matrix metalloproteinases activity in COPD associated with wood smoke.  Chest. 2004;  125 466-472
  • 65 Janoff A. Reduction of the elastase in inhibitory capacity of alpha-1-antitrypsin by peroxides in cigarette smoke: an analysis of the brands and the filters.  Am Rev Respir Dis. 1982;  126 25-30
  • 66 Gadek J, Fells G A, Crystal R G. Cigarette smoking induces functional antiprotease deficiency in lower respiratory tract of humans.  Science. 1979;  206 1315-1316
  • 67 Campbell E J, Campbell M A, Boukedes S S, Owen C A. Quantum proteolysis by neutrophils: implications for pulmonary emphysema in α1-antitrypsin deficiency.  J Clin Invest. 1999;  104 337-344
  • 68 Taggart C C, Lowe G J, Greene C M et al.. Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor.  J Biol Chem. 2001;  276 33345-33352
  • 69 Okada Y, Watanabe S, Nakanishi I et al.. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases.  FEBS Lett. 1988;  229 157-160
  • 70 Hautamaki R D, Kobayashi D K, Senior R M, Shapiro S D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice.  Science. 1997;  277 2002-2004
  • 71 Dangelo M, Sarment D P, Billings P C, Pacifici M. Activation of transforming growth factor beta in chondrocytes undergoing endochondral ossification.  J Bone Miner Res. 2001;  16 2339-2347
  • 72 Churg A, Wang R D, Tai H et al.. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release.  Am J Respir Crit Care Med. 2003;  167 1083-1089
  • 73 Skold C M, Liu X, Umino T et al.. Human neutrophil elastase augments fibroblast-mediated contraction of released collagen gels.  Am J Respir Crit Care Med. 1999;  159 1138-1146
  • 74 Kohri K, Ueki I F, Nadel J A. Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation.  Am J Physiol Lung Cell Mol Physiol. 2002;  283 L531-L540
  • 75 MacNee W. Oxidants/antioxidants and chronic obstructive pulmonary disease: pathogenesis to therapy.  Novartis Found Symp. 2001;  234 169-185
  • 76 Rahman I, Li X Y, Donaldson K, Harrison D J, MacNee W. Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress.  Am J Physiol. 1995;  269 L285-L292
  • 77 Choi A M, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury.  Am J Respir Cell Mol Biol. 1996;  15 9-19
  • 78 Otterbein L E, Kolls J K, Mantell L L, Cook J L, Alam J, Choi A M. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury.  J Clin Invest. 1999;  103 1047-1054
  • 79 Yamada N, Yamaya M, Okinaga S et al.. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema.  Am J Hum Genet. 2000;  66 187-195
  • 80 Maestrelli P, El Messlemani A H, De Fina O et al.. Increased expression of heme oxygenase (HO)-1 in alveolar spaces and HO-2 in alveolar walls of smokers.  Am J Respir Crit Care Med. 2001;  164 1508-1513
  • 81 Maestrelli P, Paska C, Saetta M et al.. Decreased haem oxygenase-1 and increased inducible nitric oxide synthase in the lung of severe COPD patients.  Eur Respir J. 2003;  21 971-976
  • 82 Ito K, Hanazawa T, Tomita K, Barnes P J, Adcock I M. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration.  Biochem Biophys Res Commun. 2004;  315 240-245
  • 83 Ito K, Barnes P J, Adcock I M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12.  Mol Cell Biol. 2000;  20 6891-6903
  • 84 Takeyama K, Dabbagh K, Jeong Shim J, Dao-Pick T, Ueki I F, Nadel J A. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils.  J Immunol. 2000;  164 1546-1552
  • 85 Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.  Biochem Pharmacol. 2004;  68 1255-1267
  • 86 Takeyama K, Jung B, Shim J J et al.. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke.  Am J Physiol Lung Cell Mol Physiol. 2001;  280 L165-L172
  • 87 MacNee W. Oxidants/antioxidants and COPD.  Chest. 2000;  117(suppl 1) 303S-317S
  • 88 Liebow A A. Pulmonary emphysema with special reference to vascular changes.  Am Rev Respir Dis. 1959;  80 67-93
  • 89 Kasahara Y, Tuder R M, Taraseviciene-Stewart L et al.. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema.  J Clin Invest. 2000;  106 1311-1319
  • 90 Tang K, Rossiter H B, Wagner P D, Breen E C. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice.  J Appl Physiol. 2004;  97 1559-1566
  • 91 Tsao P N, Su Y N, Li H et al.. Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary emphysema.  Am J Respir Crit Care Med. 2004;  169 505-511
  • 92 Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes.  Am J Respir Cell Mol Biol. 2003;  28 555-562
  • 93 Kasahara Y, Tuder R M, Cool C D, Lynch D A, Flores S C, Voelkel N F. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema.  Am J Respir Crit Care Med. 2001;  163 737-744
  • 94 Grossmann J. Molecular mechanisms of “detachment-induced apoptosis-Anoikis.”  Apoptosis. 2002;  7 247-260
  • 95 Morse D, Choi A M. Heme oxygenase-1: the “emerging molecule” has arrived.  Am J Respir Cell Mol Biol. 2002;  27 8-16
  • 96 Aoshiba K, Tamaoki J, Nagai A. Acute cigarette smoke exposure induces apoptosis of alveolar macrophages.  Am J Physiol Lung Cell Mol Physiol. 2001;  281 L1392-L1401
  • 97 Carnevali S, Petruzzelli S, Longoni B et al.. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts.  Am J Physiol Lung Cell Mol Physiol. 2003;  284 L955-L963
  • 98 Wickenden J A, Clarke M C, Rossi A G et al.. Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis.  Am J Respir Cell Mol Biol. 2003;  29 562-570
  • 99 Kim H, Liu X, Kobayashi T et al.. Reversible cigarette smoke extract-induced DNA damage in human lung fibroblasts.  Am J Respir Cell Mol Biol. 2004;  31 483-490
  • 100 Verra F, Escudier E, Lebargy F, Bernaudin J F, De-Cremoux H, Bignon J. Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers.  Am J Respir Crit Care Med. 1995;  151 630-634
  • 101 Lee H M, Takeyama K, Dabbagh K, Lausier J A, Ueki I F, Nadel J A. Agarose plug instillation causes goblet cell metaplasia by activating EGF receptors in rat airways.  Am J Physiol Lung Cell Mol Physiol. 2000;  278 L185-L192
  • 102 Daughton D M, Matthews K, Romberger D J et al.. Smoking cessation reduces lower respiratory tract inflammation in healthy smokers.  Society for Research on Nicotine and Tobacco. February 19, 2004;  , Phoenix, AZ. Available at www.srnt.org/pubs/abstract.html
  • 103 Rennard S I. Repair. In: Calverley PMA, MacNee W, Pride NB, Rennard SI Chronic Obstructive Pulmonary Disease London; Arnold 2003: 139-150
  • 104 Wiggs B R, Bosken C, Pare P D, James A, Hogg J C. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease.  Am Rev Respir Dis. 1992;  145 1251-1258
  • 105 Roberts A B. Molecular and cell biology of TGF-beta.  Miner Electrolyte Metab. 1998;  24 111-119
  • 106 Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing.  J Dermatol Sci. 2004;  35 83-92
  • 107 Raghow R, Postlethwaite A E, Keski-Oja J, Moses H L, Kang A H. Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts.  J Clin Invest. 1987;  79 1285-1288
  • 108 Fine A, Goldstein R H. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts.  J Biol Chem. 1987;  262 3897-3902
  • 109 Lucas P A, Caplan A I. Chemotactic response of embryonic limb bud mesenchymal cells and muscle-derived fibroblasts to transforming growth factor-beta.  Connect Tissue Res. 1988;  18 1-7
  • 110 Mio T, Liu X, Adachi Y et al.. Human bronchial epithelial cells modulate collagen gel contraction by fibroblasts.  Am J Physiol. 1998;  274 L119-L126
  • 111 Liu X, Wen F Q, Kobayashi T et al.. Smad3 mediates the TGF-beta induced contraction of type 1 collagen gels by mouse embryo fibroblasts.  Cell Motil Cytoskeleton. 2003;  54 248-253
  • 112 Liu X, Kohyama T, Wang H et al.. Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells.  Am J Physiol Lung Cell Mol Physiol. 2002;  282 L1049-L1056
  • 113 Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H. Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro.  Int Arch Allergy Immunol. 2003;  132 168-176
  • 114 Miotto D, Ruggieri M P, Boschetto P et al.. Interleukin-13 and -4 expression in the central airways of smokers with chronic bronchitis.  Eur Respir J. 2003;  22 602-608
  • 115 Pierce J A, Hocott J B, Ebert R V. The collagen and elastin content of the lung in emphysema.  Ann Intern Med. 1961;  55 210-221
  • 116 Lang M R, Fiaux G W, Gillooly M, Stewart J A, Hulmes D JS, Lamb D. Collagen content of alveolar wall tissue in emphysematous and nonemphysematous lungs.  Thorax. 1994;  49 319-326
  • 117 Kuhn C, Yu S Y, Chraplyvy M. The induction of emphysema with elastase, II: Changes in connective tissue.  Lab Invest. 1976;  34 372-380
  • 118 Nakamura Y, Romberger D J, Tate L et al.. Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis.  Am J Respir Crit Care Med. 1995;  151 1497-1503
  • 119 Carnevali S, Nakamura Y, Mio T et al.. Cigarette smoke extract inhibits fibroblast-mediated collagen gel contraction.  Am J Physiol Lung Cell Mol Physiol. 1998;  274 L591-L598
  • 120 Wang H, Liu X, Umino T et al.. Effect of cigarette smoke on fibroblast-mediated gel contraction is dependent on cell density.  Am J Physiol Lung Cell Mol Physiol. 2003;  284 L205-L213
  • 121 Kohyama T, Ertl R F, Valenti V et al.. Prostaglandin E2 inhibits fibroblast chemotaxis.  Am J Physiol Lung Cell Mol Physiol. 2001;  281 L1257-L1263
  • 122 Bitterman P B, Wewers M D, Rennard S I, Adelberg S, Crystal R G. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators.  J Clin Invest. 1986;  77 700-708
  • 123 Mio T, Adachi Y, Carnevali S, Romberger D J, Spurzem J R, Rennard S I. Beta-adrenergic agonists attenuate fibroblast-mediated contraction of released collagen gels.  Am J Physiol. 1996;  270 L829-L835
  • 124 Kohyama T, Liu X, Wen F Q et al.. PDE4 inhibitors attenuate fibroblast chemotaxis and contraction of native collagen gels.  Am J Respir Cell Mol Biol. 2002;  26 694-701
  • 125 Massaro G D, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats.  Am J Physiol. 1996;  270 L305-L310
  • 126 Massaro D, Massaro G D. Pulmonary alveolus formation: critical period, retinoid regulation and plasticity.  Novartis Found Symp. 2001;  234 229-236 , discussion 236-241
  • 127 Massaro G, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats.  Nat Med. 1997;  3 675-677
  • 128 Hind M, Maden M. Retinoic acid induces alveolar regeneration in the adult mouse lung.  Eur Respir J. 2004;  23 20-27
  • 129 Massaro G D, Massaro D. Retinoic acid treatment partially rescues failed septation in rats and in mice.  Am J Physiol Lung Cell Mol Physiol. 2000;  278 L955-L960
  • 130 Lucey E C, Goldstein R H, Breuer R, Rexer B N, Ong D E, Snider G L. Retinoic acid does not affect alveolar septation in adult FVB mice with elastase-induced emphysema.  Respiration . 2003;  70 200-205
  • 131 March T H, Cossey P Y, Esparza D C, Dix K J, McDonald J D, Bowen L E. Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats.  Exp Lung Res. 2004;  30 383-404
  • 132 Fujita M, Ye Q, Ouchi H et al.. Retinoic acid fails to reverse emphysema in adult mouse models.  Thorax. 2004;  59 224-230
  • 133 Comstock G W, Menkes M S, Schober S E, Vuilleumier J P, Helsing K J. Serum levels of retinol, beta-carotene, and alpha-tocopherol in older adults.  Am J Epidemiol. 1988;  127 114-123
  • 134 Schunemann H J, Grant B J, Freudenheim J L et al.. The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population.  Am J Respir Crit Care Med. 2001;  163 1246-1255
  • 135 Wouters E F. Chronic obstructive pulmonary disease, V: Systemic effects of COPD.  Thorax. 2002;  57 1067-1070
  • 136 Casaburi R. Skeletal muscle function in COPD.  Chest. 2000;  117(suppl 1) 267S-271S
  • 137 Ashley F, Kannel W B, Sorlie P D, Masson R. Pulmonary function: relation to aging, cigarette habit, and mortality.  Ann Intern Med. 1975;  82 739-745
  • 138 Sin D D, Man S F. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease.  Circulation. 2003;  107 1514-1519
  • 139 Mannino D M, Buist A S, Petty T L, Enright P L, Redd S C. Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study.  Thorax. 2003;  58 388-393
  • 140 Debigare R, Marquis K, Cote C H et al.. Catabolic/anabolic balance and muscle wasting in patients with COPD.  Chest. 2003;  124 83-89
  • 141 Schols A M, Mostert R, Soeters P B, Wouters E F. Body composition and exercise performance in patients with chronic obstructive pulmonary disease.  Thorax. 1991;  46 695-699
  • 142 Panel AAPRG . Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based guidelines. ACCP/AACVPR Pulmonary Rehabilitation Guidelines Panel. American College of Chest Physicians.  American Association of Cardiovascular and Pulmonary Rehabilitation, Chest. 1997;  112 1363-1396
  • 143 Gosker H R, Kubat B, Schaart G, van der Vusse G J, Wouters E F, Schols A M. Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease.  Eur Respir J. 2003;  22 280-285
  • 144 Maltais F, LeBlanc P, Whittom F et al.. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD.  Thorax. 2000;  55 848-853
  • 145 Agusti A G, Sauleda J, Miralles C et al.. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2002;  166 485-489
  • 146 Di Francia M, Barbier D, Mege J L, Orehek J. Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1994;  150 1453-1455
  • 147 Yamamoto C, Yoneda T, Yoshikawa M et al.. The relationship between a decrease in fat mass and serum levels of TNF-alpha in patients with chronic obstructive pulmonary disease.  Nihon Kyobu Shikkan Gakkai Zasshi. 1997;  35 1191-1195
  • 148 Eid A A, Ionescu A A, Nixon L S et al.. Inflammatory response and body composition in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2001;  164 1414-1418
  • 149 Schols A M, Creutzberg E C, Buurman W A, Campfield L A, Saris W H, Wouters E F. Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 1220-1226
  • 150 Takabatake N, Nakamura H, Abe S et al.. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-alpha system in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2000;  161 1179-1184
  • 151 Nguyen L T, Bedu M, Caillaud D et al.. Increased resting energy expenditure is related to plasma TNF-alpha concentration in stable COPD patients [see comments].  Clin Nutr. 1999;  18 269-274
  • 152 Karadag F, Karul A B, Cildag O, Altun C, Gurgey O. Determinants of BMI in patients with COPD.  Respirology. 2004;  9 70-75
  • 153 Calikoglu M, Sahin G, Unlu A et al.. Leptin and TNF-alpha levels in patients with chronic obstructive pulmonary disease and their relationship to nutritional parameters.  Respiration. 2004;  71 45-50
  • 154 Schols A M, Slangen J, Vovovics L, Wouters E F. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1998;  157 1791-1797
  • 155 Chailleux E, Bauroux B, Binet F, Dautzenberg B, Polu J-M. Predictors of survival in patients receiving domiciliary oxygen therapy or mechanical ventilation.  Chest. 1996;  109 741-749
  • 156 Sullivan P F, Kendler K S. The genetic epidemiology of smoking.  Nicotine Tob Res. 1999;  1(Suppl 2) S51-S57 , discussion S69-S70
  • 157 Sin D D, Man J P, Man S F. The risk of osteoporosis in Caucasian men and women with obstructive airways disease.  Am J Med. 2003;  114 10-14
  • 158 Ionescu A A, Schoon E. Osteoporosis in chronic obstructive pulmonary disease.  Eur Respir J Suppl. 2003;  46 64s-75s
  • 159 Peat J K, Woolcock A J, Cullen K. Rate of decline of lung function in subjects with asthma.  Eur J Respir Dis. 1987;  70 171-179
  • 160 Lange P, Parner J, Vestbo J, Schnor P, Jensen G. A 15-year follow-up study of ventilatory function in adults with asthma.  N Engl J Med. 1998;  339 1194-1200
  • 161 Ulrik C S, Backer V. Nonreversible airflow obstruction in life-long nonsmokers with moderate to severe asthma.  Eur Respir J. 1999;  14 892-896
  • 162 Barker D JP, Godfrey K M, Fall C HD, Osmond C, Winter P D, Shaheen S O. Relation of birthweight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease.  BMJ. 1991;  303 671-675
  • 163 Shaheen S O, Sterne J A, Florey C D. Birth weight, childhood lower respiratory tract infection, and adult lung function.  Thorax. 1998;  53 549-553
  • 164 Sherrill D L, Lebowitz M D, Knudson R J, Burrows B. Smoking and symptom effects on the curves of lung function growth and decline.  Am Rev Respir Dis. 1991;  144 17-22
  • 165 Tager I, Segal M, Speizer F, Weiss S. The natural history of forced expiratory volumes.  Am Rev Respir Dis. 1988;  138 837-849

John R SpurzemM.D. 

University of Nebraska Medical Center, 985300 Nebraska Medical Center

Omaha, NE 68198-5300

Email: jspurzem@unmc.edu

    >