Semin Respir Crit Care Med 2008; 29(5): 560-568
DOI: 10.1055/s-0028-1085707
© Thieme Medical Publishers

New Diagnostics for Latent and Active Tuberculosis: State of the Art and Future Prospects

Madhukar Pai1 , Richard O'Brien2
  • 1Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
  • 2Foundation for Innovative New Diagnostics, Geneva, Switzerland
Further Information

Publication History

Publication Date:
22 September 2008 (online)

ABSTRACT

Tuberculosis (TB) continues to be the world's most important infectious cause of morbidity and mortality among adults. Nearly 9 million people develop TB disease each year, and an estimated 1.6 million die from the disease. Despite this enormous global burden, case detection rates are low, posing serious hurdles for TB control. Conventional TB diagnosis continues to rely on antiquated tests such as sputum smear microscopy, culture, tuberculin skin test, and chest radiography. These tests have several limitations and perform poorly in populations affected by the HIV epidemic. Conventional tests for detection of drug resistance are time consuming, tedious, and inaccessible in most settings. In this review, we describe recent advances in the diagnosis of latent and active TB, and detection of drug resistance. Although the perfect test will not be ready for large-scale roll-out and integration into routine TB care services for some time, substantial progress has been made in expanding the TB diagnostic product pipeline. With the resurgence of interest in the development of new tools for TB control, and the recent influx of funding and political support, it is likely that the next few years will see the introduction of new diagnostic tools into routine TB control programs.

REFERENCES

  • 1 World Health Organization .Global Tuberculosis Control: Surveillance, Planning, Financing. WHO Report 2007. WHO/HTM/TB/2007.376. Geneva, Switzerland; World Health Organization 2007
  • 2 Perkins M D, Cunningham J. Facing the crisis: improving the diagnosis of tuberculosis in the HIV era.  J Infect Dis. 2007;  196(Suppl 1) S15-S27
  • 3 Keeler E, Perkins M D, Small P et al.. Reducing the global burden of tuberculosis: the contribution of improved diagnostics.  Nature. 2006;  444(Suppl 1) 49-57
  • 4 Raviglione M C, Uplekar M W. WHO's new Stop TB Strategy.  Lancet. 2006;  367 952-955
  • 5 Stop TB Partnership and World Health Organization .The Global Plan to Stop TB 2006–2015. Geneva, Switzerland; World Health Organization 2006
  • 6 World Health Organization .New Technologies for Tuberculosis Control: A Framework for Their Adoption, Introduction and Implementation WHO/HTM/STB/2007.40. Geneva, Switzerland; World Health Organization 2007
  • 7 Perkins M D, Roscigno G, Zumla A. Progress towards improved tuberculosis diagnostics for developing countries.  Lancet. 2006;  367 942-943
  • 8 Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis, I: Latent tuberculosis.  Expert Rev Mol Diagn. 2006;  6 413-422
  • 9 Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis, II: Active tuberculosis and drug resistance.  Expert Rev Mol Diagn. 2006;  6 423-432
  • 10 Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research.  Ann Intern Med. 2007;  146 340-354
  • 11 Pai M, Zwerling A, Menzies D. Systematic review: T-cell based assays for the diagnosis of latent tuberculosis infection—an update.  Ann Intern Med. 2008;  149 177-184
  • 12 Pai M, Dheda K, Cunningham J, Scano F, O'Brien R. T-cell assays for the diagnosis of latent tuberculosis infection: moving the research agenda forward.  Lancet Infect Dis. 2007;  7 428-438
  • 13 Andersen P, Doherty T M, Pai M, Weldingh K. The prognosis of latent tuberculosis: can disease be predicted?.  Trends Mol Med. 2007;  13 175-182
  • 14 Arend S M, Franken W P, Aggerbeck H et al.. Double-blind randomized phase I study comparing rdESAT-6 to tuberculin as skin test reagent in the diagnosis of tuberculosis infection.  Tuberculosis (Edinb). 2008;  88 249-261
  • 15 Steingart K R, Ramsay A, Pai M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis.  Expert Rev Anti Infect Ther. 2007;  5 327-331
  • 16 Steingart K R, Henry M, Ng V et al.. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review.  Lancet Infect Dis. 2006;  6 570-581
  • 17 Steingart K R, Ng V, Henry M et al.. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review.  Lancet Infect Dis. 2006;  6 664-674
  • 18 Mase S R, Ramsay A, Ng V et al.. Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: a systematic review.  Int J Tuberc Lung Dis. 2007;  11 485-495
  • 19 World Health Organization .Reduction of Number of Smears for the Diagnosis of Pulmonary TB. 2008. Accessed January 27, 2008 at http://www.who.int/tb/dots/laboratory/policy/en/index2.html
  • 20 Anthony R M, Kolk A H, Kuijper S, Klatser P R. Light emitting diodes for auramine O fluorescence microscopic screening of Mycobacterium tuberculosis.  Int J Tuberc Lung Dis. 2006;  10 1060-1062
  • 21 Foundation for Innovative New Diagnostics .FIND and Zeiss Team Up to Develop an Affordable Fluorescence Microscope for the Diagnosis of TB and Other Infectious Diseases. Press release, 2007. Accessed February 1, 2008 at http://www.finddiagnostics.org/news/press/zeiss_nov07.shtml
  • 22 Marais B J, Brittle W, Painczyk K et al.. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum.  Clin Infect Dis. 2008;  47(2) 203-207
  • 23 Cruciani M, Scarparo C, Malena M, Bosco O, Serpelloni G, Mengoli C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria.  J Clin Microbiol. 2004;  42 2321-2325
  • 24 World Health Organization .The Use of Liquid Medium for Culture and DST. 2008. Accessed January 27, 2008 at http://www.who.int/tb/dots/laboratory/policy/en/index3.html
  • 25 Moore D A, Evans C A, Gilman R H et al.. Microscopic-observation drug-susceptibility assay for the diagnosis of TB.  N Engl J Med. 2006;  355 1539-1550
  • 26 Flores L L, Pai M, Colford Jr J M, Riley L W. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression.  BMC Microbiol. 2005;  5 55
  • 27 Greco S, Girardi E, Navarra S, Saltini C. The current evidence on diagnostic accuracy of commercial based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis.  Thorax. 2006;  61 783-790
  • 28 Ling D, Flores L, Riley L, Pai M. Commercial Nucleic-Acid Amplification Tests for Diagnosis of Pulmonary Tuberculosis in Respiratory Specimens: Meta-Analysis and Meta-Regression. PLoS ONE.  2008;  3(2) e1536
  • 29 Pai M, Flores L L, Hubbard A, Riley L W, Colford Jr J M. Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis.  BMC Infect Dis. 2004;  4 6
  • 30 Pai M, Flores L L, Pai N, Hubbard A, Riley L W, Colford Jr J M. Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis.  Lancet Infect Dis. 2003;  3 633-643
  • 31 Daley P, Thomas S, Pai M. Nucleic acid amplification tests for the diagnosis of tuberculous lymphadenitis: a systematic review.  Int J Tuberc Lung Dis. 2007;  11 1166-1176
  • 32 Pai M, Ling D I. Rapid diagnosis of extrapulmonary tuberculosis using nucleic acid amplification tests: what is the evidence?.  Future Microbiol. 2008;  3 1-4
  • 33 Boehme C C, Nabeta P, Henostroza G et al.. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries.  J Clin Microbiol. 2007;  45 1936-1940
  • 34 Raja S, Ching J, Xi L et al.. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing.  Clin Chem. 2005;  51 882-890
  • 35 Ling D, Zwerling A, Pai M. GenoType MTBDR assays for diagnosis of multidrug-resistant tuberculosis: a meta-analysis.  Eur Resp Journal. 2008;  , Published ahead of print, July 9, 2008
  • 36 Barnard M, Albert H, Coetzee G, O'Brien R, Bosman M E. Rapid molecular screening for MDR TB in a high volume public health laboratory in South Africa.  Am J Respir Crit Care Med. 2008;  177 787-792
  • 37 Steingart K R, Ramsay A, Pai M. Commercial serological tests for the diagnosis of tuberculosis: do they work?.  Future Microbiol. 2007;  2 355-359
  • 38 Steingart K R, Henry M, Laal S et al.. A systematic review of commercial serological antibody detection tests for the diagnosis of extra-pulmonary tuberculosis.  Thorax. 2007;  62 911-918
  • 39 Steingart K R, Henry M, Laal S et al.. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review.  PLoS Med. 2007;  4 e202
  • 40 Lyashchenko K P, Greenwald R, Esfandiari J et al.. PrimaTB STAT-PAK assay, a novel, rapid lateral-flow test for tuberculosis in nonhuman primates.  Clin Vaccine Immunol. 2007;  14 1158-1164
  • 41 Boehme C, Molokova E, Minja F et al.. Detection of mycobacterial lipoarabinomannan with an antigen-capture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis.  Trans R Soc Trop Med Hyg. 2005;  99 893-900
  • 42 Tessema T A, Hamasur B, Bjun G, Svenson S, Bjorvatn B. Diagnostic evaluation of urinary lipoarabinomannan at an Ethiopian tuberculosis centre.  Scand J Infect Dis. 2001;  33 279-284
  • 43 Pai M, Ramsay A, O'Brien R. Evidence-based tuberculosis diagnosis.  PLoS Med. 2008;  5(7) e156
  • 44 Pai M, Kalantri S, Pascopella L, Riley L W, Reingold A L. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis.  J Infect. 2005;  51 175-187
  • 45 Kalantri S, Pai M, Pascopella L, Riley L, Reingold A. Bacteriophage- based tests for the detection of Mycobacterium tuberculosis in clinical specimens: a systematic review and meta-analysis.  BMC Infect Dis. 2005;  5 59
  • 46 Nahid P, Pai M, Hopewell P C. Advances in the diagnosis and treatment of tuberculosis.  Proc Am Thorac Soc. 2006;  3 103-110

Madhukar PaiM.D. Ph.D. 

Department of Epidemiology, Biostatistics & Occupational Health, McGill University

1020 Pine Ave. West, Montreal, Quebec, Canada H3A 1A2

Email: madhukar.pai@mcgill.ca

    >