Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Integrating signals from RTKs to ERK/MAPK

Abstract

Signals received at the cell surface must be properly transmitted to critical targets within the cell to achieve the appropriate biological response. This process of signal transduction is often initiated by receptor tyrosine kinases (RTKs), which function as entry points for many extracellular cues and play a critical role in recruiting the intracellular signaling cascades that orchestrate a particular response. Essential for most RTK-mediated signaling is the engagement and activation of the mitogen-activated protein kinase (MAPK) cascade comprised of the Raf, MEK and extracellular signal-regulated kinase (ERK) kinases. For many years, it was thought that signaling from RTKs to ERK occurred only at the plasma membrane and was mediated by a simple, linear Ras-dependent pathway. However, the limitation of this model became apparent with the discovery that Ras and ERK can be activated at various intracellular compartments, and that RTKs can modulate Ras/ERK signaling from these sites. Moreover, ERK scaffolding proteins and signaling modulators have been identified that play critical roles in determining the strength, duration and location of RTK-mediated ERK signaling. Together, these factors contribute to the diversity of biological responses generated by RTK signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA et al. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 275: 22300–22304.

    Article  CAS  PubMed  Google Scholar 

  • Agazie YM, Hayman MJ . (2003). Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol 23: 7875–7886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U et al. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13: 1610–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baass PC, Di Guglielmo GM, Authier F, Posner BI, Bergeron JJ . (1995). Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol 5: 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ et al. (2003). Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424: 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21: 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schaffer AA et al. (2007). A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13: 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Boykevisch S, Zhao C, Sondermann H, Philippidou P, Halegoua S, Kuriyan J et al. (2006). Regulation of ras signaling dynamics by sos-mediated positive feedback. Curr Biol 16: 2173–2179.

    Article  CAS  PubMed  Google Scholar 

  • Brose N, Rosenmund C . (2002). Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 115: 4399–4411.

    Article  CAS  PubMed  Google Scholar 

  • Burke P, Schooler K, Wiley HS . (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12: 1897–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D et al. (1999). Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98: 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Dai P, Xiong WC, Mei L . (2006). Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem 281: 927–933.

    Article  CAS  PubMed  Google Scholar 

  • Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G et al. (1998). Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol 8: 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Kolch W . (2002). Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 404: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ . (1994). Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13: 4269–4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downward J . (1996). Control of ras activation. Cancer Surv 27: 87–100.

    CAS  PubMed  Google Scholar 

  • Ebinu JO, Bottorff DA, Chan EY, Stang SL, Dunn RJ, Stone JC . (1998). RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science 280: 1082–1086.

    Article  CAS  PubMed  Google Scholar 

  • Fivaz M, Meyer T . (2005). Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J Cell Biol 170: 429–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S et al. (2006). A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci USA 103: 16692–16697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR et al. (2005). Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170: 261–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E . (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279: 22992–22995.

    Article  CAS  PubMed  Google Scholar 

  • Hanafusa H, Torii S, Yasunaga T, Nishida E . (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4: 850–858.

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ . (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63: 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Huang YZ, Zang M, Xiong WC, Luo Z, Mei L . (2003). Erbin suppresses the MAP kinase pathway. J Biol Chem 278: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  • Ishibe S, Joly D, Liu ZX, Cantley LG . (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16: 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Ishibe S, Joly D, Zhu X, Cantley LG . (2003). Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12: 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Aspenstrom P, Hall A . (2004). Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol Cell Biol 24: 1736–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A, Schmidt A . (2005). Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 15: 405–412.

    Article  CAS  PubMed  Google Scholar 

  • Jaumot M, Hancock JF . (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20: 3949–3958.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Sorkin A . (2002). Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 13: 1522–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D . (2006). Differential modification of Ras proteins by ubiquitination. Mol Cell 21: 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Klinghoffer RA, Kazlauskas A . (1995). Identification of a putative Syp substrate, the PDGF beta receptor. J Biol Chem 270: 22208–22217.

    Article  CAS  PubMed  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Han M, Guan K-L . (2000). The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14: 895–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour SJ, Resing KA, Candi JM, Hermann AS, Gloor JW, Herskind KR et al. (1994). Mitogen-activated protein (MAP) kinase phosphorylation of MAP kinase kinase: determination of phosphorylation sites by mass spectrometry and site-directed mutagenesis. J Biochem 116: 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M et al. (2003). Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112: 685–695.

    Article  CAS  PubMed  Google Scholar 

  • Marshall CJ . (1996). Ras effectors. Curr Opin Cell Biol 8: 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA . (2004). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427: 256–260.

    Article  CAS  PubMed  Google Scholar 

  • Montagner A, Yart A, Dance M, Perret B, Salles JP, Raynal P . (2005). A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem 280: 5350–5360.

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Philips MR . (2006). Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24: 771–800.

    Article  CAS  PubMed  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK . (2001). C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8: 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293.

    Article  CAS  PubMed  Google Scholar 

  • Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK . (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Pawson T . (2002). Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38: S3–10.

    Article  PubMed  Google Scholar 

  • Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J et al. (1991). Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10: 885–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowman SJ, Hancock JF . (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta 1746: 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Quilliam LA, Khosravi-Far R, Huff SY, Der CJ . (1995). Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays 17: 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK . (2007). CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. Curr Biol 17: 179–184.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 39: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307: 1746–1752.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F . (2006). A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 22: 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Rushworth LK, Hindley AD, O'Neill E, Kolch W . (2006). Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 26: 2262–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M et al. (2003). Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5: 427–432.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J . (2000). Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J . (2004). Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119: 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Sorkin A, Von Zastrow M . (2002). Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3: 600–614.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 39: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Teis D, Taub N, Kurzbauer R, Hilber D, de Araujo ME, Erlacher M et al. (2006). p14–MP1–MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol 175: 861–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teis D, Wunderlich W, Huber LA . (2002). Localization of the MP1–MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3: 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E . (2004). Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K et al. (2001). SPRED is a Sprouty-related suppressor of Ras signalling. Nature 412: 647–651.

    Article  CAS  PubMed  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Weber CK, Slupsky JR, Kalmes HA, Rapp UR . (2001). Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61: 3595–3598.

    CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG et al. (2001). A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 152: 765–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM et al. (2000). Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Mol Cell Biol 20: 3079–3085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Fantl WJ, Harrowe G, Williams LT . (1998). Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8: 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al. (2004). Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13: 341–355.

    Article  PubMed  Google Scholar 

  • Zheng CF, Guan KL . (1994). Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13: 1123–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK . (2002). Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol 315: 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Ziogas A, Moelling K, Radziwill G . (2005). CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 280: 24205–24211.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Fortini, D Ritt and I Daar for comments and critical reading of the manuscript. This project has been funded in whole or in part by Federal funds from the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Morrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, M., Morrison, D. Integrating signals from RTKs to ERK/MAPK. Oncogene 26, 3113–3121 (2007). https://doi.org/10.1038/sj.onc.1210394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210394

Keywords

This article is cited by

Search

Quick links