Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic linkage analysis of sarcoidosis phenotypes: the sarcoidosis genetic analysis (SAGA) study

Abstract

The sarcoidosis genetic analysis (SAGA) study previously identified eight chromosomal regions with suggestive evidence for linkage to sarcoidosis susceptibility in African-American sib pairs. Since the clinical course of sarcoidosis is variable and likely under genetic control, we used the affected relative pair portion of the SAGA sample (n=344 pairs) to perform multipoint linkage analyses with covariates based on pulmonary and organ involvement phenotypes. Chest radiographic resolution was the pulmonary phenotype with the highest LOD (logarithm of the backward odds, or likelihood ratio) score of 5.11 at D1S3720 on chromosome 1p36 (P=4 × 10−5). In general, higher LOD scores were attained for covariates that modeled clustered organ system involvement rather than individual organ systems, with the cardiac/renal group having the highest LOD score of 6.65 at chromosome 18q22 (P=2 × 10−5). The highest LOD scores for the other three organ involvement groups of liver/spleen/bone marrow, neuro/lymph and ocular/skin/joint were 3.72 at 10p11 (P=0.0004), 5.16 at 7p22 (P=4 × 10−5) and 2.93 at 10q26 (P=0.001), respectively. Most of the phenotype linkages did not overlap with the regions previously found linked to susceptibility. Our results suggest that genes influencing clinical presentation of sarcoidosis in African Americans are likely to be different from those that underlie disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Schurmann M, Reichel P, Muller-Myhsok B, Schlaak M, Muller-Quernheim J, Schwinger E . Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Respir Crit Care Med 2001; 164: 840–846.

    Article  CAS  Google Scholar 

  2. Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 2005; 37: 357–364.

    Article  CAS  Google Scholar 

  3. Iannuzzi, MC, Iyengar SK, Gray-McGuire C, Elston RC, Baughman RP, Donohue JF et al. Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 2005; 6: 509–518.

    Article  CAS  Google Scholar 

  4. Grutters JC, Sato H, Welsh KI, du Bois RM . The importance of sarcoidosis genotype to lung phenotype. Am J Respir Cell Mol Biol 2003; 29: S59–S62.

    CAS  PubMed  Google Scholar 

  5. Yamada R, Ymamoto K . Recent findings on genes associated with inflammatory disease. Mutat Res 2005; 573: 136–151.

    Article  CAS  Google Scholar 

  6. Xing C, Gray-McGuire C, Kelly JA, Garriott P, Bukulmez H, Harley JB et al. Genetic linkage of systemic lupus erythematosus to 13q32 in African American families with affected male members. Hum Genet 2005; 118: 309–321.

    Article  CAS  Google Scholar 

  7. Altmuller J, Seidel C, Lee YA, Loesgen S, Bulle D, Friedrichs F et al. Phenotypic and genetic heterogeneity in a genome-wide linkage study of asthma families. BMC Pulm Med 2005; 5: 1.

    Article  Google Scholar 

  8. Mrazek F, Holla LI, Hutyrova B, Znojil V, Vasku A, Kolek V et al. Association of tumour necrosis factor-alpha, lymphotoxin-alpha and HLA-DRB1 gene polymorphisms with Lofgren's syndrome in Czech patients with sarcoidosis. Tissue Antigens 2005; 65: 163–171.

    Article  CAS  Google Scholar 

  9. Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J . HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 1997; 156: 1601–1605.

    Article  CAS  Google Scholar 

  10. Swider C, Schnittger L, Bogunia-Kubik K, Gerdes J, Flad H, Lange A et al. TNF-alpha and HLA-DR genotyping as potential prognostic markers in pulmonary sarcoidosis. Eur Cytokine Netw 1999; 10: 143–146.

    CAS  PubMed  Google Scholar 

  11. Sato H, Grutters JC, Pantelidis P, Mizzon AN, Ahmad T, van Houte AJ et al. HLA-DQB1*0201: a Marker for Good Prognosis in British and Dutch Patients with Sarcoidosis. Am J Respir Cell Mol Biol 2002; 27: 406–412.

    Article  CAS  Google Scholar 

  12. Lofgren S . Erythema nodosum: studies on etiology and pathogenesis in 185 adult cases. Acta Med Scand 1946; 124: 1–197.

    Google Scholar 

  13. Grunewald J, Eklund A, Olerup O . Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am J Respir Crit Care Med 2004; 169: 696–702.

    Article  Google Scholar 

  14. Martinetti M, Tinelli C, Kolek V, Cuccia M, Salvaneschi L, Pasturenzi L et al. The sarcoidosis map': a joint survey of clinical and immunogenetic findings in two European countries. Am J Respir Crit Care Med 1995; 152: 557–564.

    Article  CAS  Google Scholar 

  15. Judson MA, Hirst K, Iyengar SK, Rybicki BA, El-Ghormli L, Baughman RP et al. Comparison of sarcoidosis phenotypes among affected African-American siblings. Chest 2006; 130: 855–862.

    Article  Google Scholar 

  16. Sharma OP, Johnson CS, Balchum OJ . Familial sarcoidosis. Report of four siblings with acute sarcoidosis. Am Rev Respir Dis 1971; 104: 255–257.

    CAS  PubMed  Google Scholar 

  17. Nassif X, Valeyre D, Loiseau A, Battesti JP . Familial sarcoidosis Apropos of 22 families. Ann Med Int (Paris) 1985; 136: 611–614.

    CAS  Google Scholar 

  18. Moura M, Carre P, Larios-Ramos L, Didier A, Leophonte P . Sarcoidosis and heredity 3. familial cases. Rev Pneumol Clin 1990; 46: 28–30.

    CAS  PubMed  Google Scholar 

  19. Rybicki BA, Hirst K, Iyengar SK, Barnard JG, Judson MA, Rose CS et al. A sarcoidosis genetic linkage consortium: the sarcoidosis genetic analysis (SAGA) study. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22: 115–122.

    PubMed  Google Scholar 

  20. Reynolds HY . Sarcoidosis: impact of other illnesses on the presentation and management of multi-organ disease. Lung 2002; 180: 281–299.

    Article  CAS  Google Scholar 

  21. Bowden DW, Colicigno CJ, Langefeld CD, Sale MM, Williams A, Anderson PJ et al. A genome scan for diabetic nephropathy in African Americans. Kidney Int 2004; 66: 1517–1526.

    Article  CAS  Google Scholar 

  22. Vardarli I, Baier LJ, Hanson RL, Akkoyun I, Fischer C, Rohmeiss P et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–23. Kidney Int 2002; 62: 2176–2183.

    Article  CAS  Google Scholar 

  23. Inagaki-Ohara K, Hanada T, Yoshimura A . Negative regulation of cytokine signaling and inflammatory diseases. Curr Opin Pharmacol 2003; 3: 435–442.

    Article  CAS  Google Scholar 

  24. Bayle J, Letard S, Frank R, Dubreuil P, De SP . Suppressor of cytokine signaling 6 associates with KIT and regulates KIT receptor signaling. J Biol Chem 2004; 279: 12249–12259.

    Article  CAS  Google Scholar 

  25. Langefeld CD, Davis CC, Brown WM . Nonparametric linkage regression. I: combined Caucasian CSGA and German genome scans for asthma. Genet Epidemiol 2001; 21 (Suppl 1): S136–S141.

    Article  Google Scholar 

  26. Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73: 720–735.

    Article  CAS  Google Scholar 

  27. Just JJ, King MC, Thomson G, Klitz W . African-American HLA class II allele and haplotype diversity. Tissue Antigens 1997; 49: 547–555.

    Article  CAS  Google Scholar 

  28. Zachary AA, Bias WB, Johnson A, Rose SM, Leffell MS . Antigen, allele, and haplotype frequencies report of the ASHI minority antigens workshops: part 1, African-Americans. Hum Immunol 2001; 62: 1127–1136.

    Article  CAS  Google Scholar 

  29. Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC . The BTNL2 Gene and Sarcoidosis Susceptibility in African Americans and Whites. Am J Hum Genet 2005; 77: 491–499.

    Article  CAS  Google Scholar 

  30. Thompson CL, Rybicki BA, Iannuzzi MC, Elston RC, Iyengar SK, Gray-McGuire C et al. Reduction of Sample Heterogeneity through Use of Population Substructure: an example from a population of African American families with Sarcoidosis. Am J Hum Genet 2006; 79: 606–613.

    Article  CAS  Google Scholar 

  31. SAGE. Statistical Analysis for Genetic Epidemiology. Release 5.3: 2006. http://genepi.cwru.edu/.

  32. Olson JM . A general conditional-logistic model for affected-relative-pair linkage studies. Am J Hum Genet 1999; 65: 1760–1769.

    Article  CAS  Google Scholar 

  33. Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM . Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 2001; 68: 1197–1206.

    Article  CAS  Google Scholar 

  34. Sinha M, Song Y, Elston RC, Olson JM, Goddard KA . Prediction of empirical p-values from asymptotic p-values for conditional logistic affected relative pair linkage analysis. Hum Hered 2006; 61: 45–54.

    Article  Google Scholar 

  35. Scadding JG . Prognosis of intrathoracic sarcoidosis in England: a review of 136 cases after five years' observation. Br Med J 1961; 5261: 1165–1172.

    Article  Google Scholar 

  36. Judson MA, Baughman RP, Teirstein AS, Terrin ML, Yeager Jr H . Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS Research Group. A Case Control Etiologic Study of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999; 16: 75–86.

    CAS  PubMed  Google Scholar 

  37. SAS Institute Inc. SAS/STAT Users's Guide, Version 8. SAS Institute Inc.: Cary, NC, USA, 1989, pp 4797–4828.

Download references

Acknowledgements

We thank all family members who participated in our study. This work was supported by National Institutes of Health Grants UO1 HL060263, GM28356 and P41 RR003655.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B A Rybicki.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybicki, B., Sinha, R., Iyengar, S. et al. Genetic linkage analysis of sarcoidosis phenotypes: the sarcoidosis genetic analysis (SAGA) study. Genes Immun 8, 379–386 (2007). https://doi.org/10.1038/sj.gene.6364396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364396

Keywords

This article is cited by

Search

Quick links