Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?

Abstract

Virulent Mycobacterium tuberculosis inhibits apoptosis and triggers necrosis of host macrophages to evade innate immunity and delay the initiation of adaptive immunity. By contrast, attenuated M. tuberculosis induces macrophage apoptosis, an innate defence mechanism that reduces bacterial viability. In this Opinion article, we describe how virulent M. tuberculosis blocks production of the eicosanoid lipid mediator prostaglandin E2 (PGE2). PGE2 production by infected macrophages prevents mitochondrial damage and initiates plasma membrane repair, two processes that are crucial for preventing necrosis and inducing apoptosis. Thus, M. tuberculosis-mediated modulation of eicosanoid production determines the death modality of the infected macrophage, which in turn has a substantial impact on the outcome of infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fate of infected macrophages affects host resistance to Mycobacterium tuberculosis infection.
Figure 2: The balance of prostaglandin E2 and lipoxin A4 determine the cellular fate of macrophages infected with Mycobacterium tuberculosis.
Figure 3: The antinecrotic action of prostaglandin E2 is mediated through the induction of membrane repair and the protection of mitochondria.

Similar content being viewed by others

References

  1. Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  Google Scholar 

  2. Bhatt, K. & Salgame, P. Host innate immune response to Mycobacterium tuberculosis. J. Clin. Immunol. 27, 347–362 (2007).

    Article  CAS  Google Scholar 

  3. Baena, A. & Porcelli, S. A. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 74, 189–204 (2009).

    Article  CAS  Google Scholar 

  4. Fink, S. L., Bergsbaken, T. & Cookson, B. T. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl Acad. Sci. USA 105, 4312–4317 (2008).

    Article  CAS  Google Scholar 

  5. Kroemer, G. et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 16, 3–11 (2009).

    Article  CAS  Google Scholar 

  6. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  Google Scholar 

  7. Labbe, K. & Saleh, M. Cell death in the host response to infection. Cell Death Differ. 15, 1339–1349 (2008).

    Article  CAS  Google Scholar 

  8. Haimovich, B. & Venkatesan, M. M. Shigella and Salmonella: death as a means of survival. Microbes Infect. 8, 568–577 (2006).

    Article  CAS  Google Scholar 

  9. Bergsbaken, T. & Cookson, B. T. Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 3, e161 (2007).

    Article  Google Scholar 

  10. Fink, S. L. & Cookson, B. T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol. 9, 2562–2570 (2007).

    Article  CAS  Google Scholar 

  11. Master, S. S. et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3, 224–232 (2008).

    Article  CAS  Google Scholar 

  12. Kurenuma, T. et al. The RD1 locus in the Mycobacterium tuberculosis genome contributes to activation of caspase-1 via induction of potassium ion efflux in infected macrophages. Infect. Immun. 77, 3992–4001 (2009).

    Article  CAS  Google Scholar 

  13. Koo, I. C. et al. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10, 1866–1878 (2008).

    Article  CAS  Google Scholar 

  14. Mayer-Barber, K. D. et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

    Article  CAS  Google Scholar 

  15. Peters, N. C. et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970–974 (2008).

    Article  CAS  Google Scholar 

  16. Ritter, U., Frischknecht, F. & van Zandbergen, G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 25, 505–510 (2009).

    Article  CAS  Google Scholar 

  17. Laskay, T., van Zandbergen, G. & Solbach, W. Neutrophil granulocytes – Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol. 11, 210–214 (2003).

    Article  CAS  Google Scholar 

  18. Nogueira, C. V. et al. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog. 5, e1000478 (2009).

    Article  Google Scholar 

  19. Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nature Immunol. 9, 1189–1197 (2008).

    Article  CAS  Google Scholar 

  20. Duan, L., Gan, H., Arm, J. & Remold, H. G. Cytosolic phospholipase A2 participates with TNF-α in the induction of apoptosis of human macrophages infected with Mycobacterium tuberculosis H37Ra. J. Immunol. 166, 7469–7476 (2001).

    Article  CAS  Google Scholar 

  21. Lee, J., Remold, H. G., Ieong, M. H. & Kornfeld, H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J. Immunol. 176, 4267–4274 (2006).

    Article  CAS  Google Scholar 

  22. Oddo, M. et al. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160, 5448–5454 (1998).

    CAS  Google Scholar 

  23. Brookes, R. H. et al. CD8+ T cell-mediated suppression of intracellular Mycobacterium tuberculosis growth in activated human macrophages. Eur. J. Immunol. 33, 3293–3302 (2003).

    Article  CAS  Google Scholar 

  24. Chen, M., Gan, H. & Remold, H. G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).

    Article  CAS  Google Scholar 

  25. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nature Immunol. 10, 899–906 (2009).

    Article  CAS  Google Scholar 

  26. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  Google Scholar 

  27. Keane, J., Remold, H. G. & Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164, 2016–2020 (2000).

    Article  CAS  Google Scholar 

  28. Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007).

    Article  CAS  Google Scholar 

  29. Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007).

    Article  Google Scholar 

  30. Wolf, L. A. & Laster, S. M. Characterization of arachidonic acid-induced apoptosis. Cell Biochem. Biophys. 30, 353–368 (1999).

    Article  CAS  Google Scholar 

  31. Chang, D. J., Ringold, G. M. & Heller, R. A. Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-α is mediated by lipoxygenase metabolites of arachidonic acid. Biochem. Biophys. Res. Commun. 188, 538–546 (1992).

    Article  CAS  Google Scholar 

  32. Peterson, D. A. et al. Polyunsaturated fatty acids stimulate superoxide formation in tumor cells: a mechanism for specific cytotoxicity and a model for tumor necrosis factor? Biochem. Biophys. Res. Commun. 155, 1033–1037 (1988).

    Article  CAS  Google Scholar 

  33. Jayadev, S., Linardic, C. M. & Hannun, Y. A. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor α. J. Biol. Chem. 269, 5757–5763 (1994).

    CAS  PubMed  Google Scholar 

  34. Finstad, H. S. et al. Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid. Biochem. J. 336, 451–459 (1998).

    Article  CAS  Google Scholar 

  35. Rocca, B. & FitzGerald, G. A. Cyclooxygenases and prostaglandins: shaping up the immune response. Int. Immunopharmacol. 2, 603–630 (2002).

    Article  CAS  Google Scholar 

  36. Murakami, M. et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem. 275, 32783–32792 (2000).

    Article  CAS  Google Scholar 

  37. Sugimoto, Y. & Narumiya, S. Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617 (2007).

    Article  CAS  Google Scholar 

  38. D'Avila, H. et al. Mycobacterium bovis bacillus Calmette–Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J. Immunol. 176, 3087–3097 (2006).

    Article  CAS  Google Scholar 

  39. Almeida, P. E. et al. Mycobacterium bovis bacillus Calmette–Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor γ expression and activation: functions in inflammation, lipid metabolism, and pathogenesis. J. Immunol. 183, 1337–1345 (2009).

    Article  CAS  Google Scholar 

  40. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol. 2, 612–619 (2001).

    Article  CAS  Google Scholar 

  41. Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  Google Scholar 

  42. Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).

    Article  CAS  Google Scholar 

  43. Zamzami, N. et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661–1672 (1995).

    Article  CAS  Google Scholar 

  44. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  45. Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  CAS  Google Scholar 

  46. Gan, H. et al. Enhancement of antimycobacterial activity of macrophages by stabilization of inner mitochondrial membrane potential. J. Infect. Dis. 191, 1292–1300 (2005).

    Article  CAS  Google Scholar 

  47. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  Google Scholar 

  48. Togo, T., Alderton, J. M., Bi, G. Q. & Steinhardt, R. A. The mechanism of facilitated cell membrane resealing. J. Cell Sci. 112, 719–731 (1999).

    CAS  PubMed  Google Scholar 

  49. Granger, B. L. et al. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J. Biol. Chem. 265, 12036–12043 (1990).

    CAS  PubMed  Google Scholar 

  50. Novikoff, P. M., Tulsiani, D. R., Touster, O., Yam, A. & Novikoff, A. B. Immunocytochemical localization of α-D-mannosidase II in the Golgi apparatus of rat liver. Proc. Natl Acad. Sci. USA 80, 4364–4368 (1983).

    Article  CAS  Google Scholar 

  51. Martinez, I. et al. Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149 (2000).

    Article  CAS  Google Scholar 

  52. Burgoyne, R. D., O'Callaghan, D. W., Hasdemir, B., Haynes, L. P. & Tepikin, A. V. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci. 27, 203–209 (2004).

    Article  CAS  Google Scholar 

  53. Togo, T., Alderton, J. M. & Steinhardt, R. A. Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol. Biol. Cell 14, 93–106 (2003).

    Article  CAS  Google Scholar 

  54. Regan, J. W. EP2 and EP4 prostanoid receptor signaling. Life Sci. 74, 143–153 (2003).

    Article  CAS  Google Scholar 

  55. Bafica, A. et al. Host control of mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J. Clin. Invest. 115, 1601–1606 (2005).

    Article  CAS  Google Scholar 

  56. Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H. G. & Behar, S. M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nature Immunol. 11 Jul 2010 (doi:10.1038/ni.1904).

    Article  CAS  Google Scholar 

  57. van der Wel, N. N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  Google Scholar 

  58. Weerdenburg, E. M., Peters, P. J. & van der Wel, N. N. How do mycobacteria activate CD8+ T cells? Trends Microbiol. 18, 1–10 (2009).

    Article  Google Scholar 

  59. Volkman, H. E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327, 466–469 (2010).

    Article  CAS  Google Scholar 

  60. Chackerian, A. A., Alt, J. M., Perera, T. V., Dascher, C. C. & Behar, S. M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    Article  CAS  Google Scholar 

  61. Aronoff, D. M. et al. E-prostanoid 3 receptor deletion improves pulmonary host defense and protects mice from death in severe Streptococcus pneumoniae infection. J. Immunol. 183, 2642–2649 (2009).

    Article  CAS  Google Scholar 

  62. Medeiros, A. I., Serezani, C. H., Lee, S. P. & Peters-Golden, M. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J. Exp. Med. 206, 61–68 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.R.G. and S.M.B. are supported by the US National Institutes of Health (grant R01 AI073774).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel M. Behar or Heinz G. Remold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Coxiella burnetii

Danio rerio

Legionella pneumophila

Leishmania major

Listeria monocytogenes

Mycobacterium bovis bacille Calmette–Guérin

Mycobacterium marinum

Mycobacterium tuberculosis

Salmonella enterica subsp. enterica serovar Typhimurium

Shigella flexneri

Yersinia pestis

FURTHER INFORMATION

Samuel M. Behar's homepage

Glossary

Apoptosis

A type of programmed cell death defined by chromatin condensation (pyknosis) and fragmentation, blebbing of the plasma membrane and formation of apoptotic bodies. The plasma membrane of an apoptotic cell remains intact and contains proteins that are cross-linked by transglutaminases such as annexin 1.

Efferocytosis

The uptake of apoptotic cells or apoptotic bodies by phagocytic cells.

Eicosanoid

A lipid mediator that is derived from arachidonic acid. Eicosanoids include prostaglandins, lipoxins, leukotrienes, prostacyclins, thromboxanes and hydroxyeicosatetraenoic acid compounds.

Mitochondrial membrane potential

The electrochemical gradient across the mitochondrial membranes, given the symbol ΔΨm. Complexes I, III and IV of the electron transport system in the inner mitochondrial membrane pump protons against their concentration gradient from the mitochondrial matrix into the inter-membrane space, making the matrix more negative.

Mitochondrial permeability transition

An increase in the permeability of the mitochondrial membranes to molecules of less than 1,500 daltons.

Necrosis

A form of cell death that is characterized by swelling of cytoplasmic organelles, including the mitochondria, and a loss of plasma membrane integrity.

Plasma membrane microdisruption

A pore formed by damage of the plasma membrane, as determined by measuring the diffusion of fluorescent dextran, an inert impermeant molecule.

Prostanoid

A lipid metabolite of arachidonic acid that is a product of the cyclooxygenase cascade and of specific prostanoid synthases.

sn-2 position

The second (that is, middle) carbon atom in the glycerol backbone of phospholipids, providing a link for fatty acids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behar, S., Divangahi, M. & Remold, H. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?. Nat Rev Microbiol 8, 668–674 (2010). https://doi.org/10.1038/nrmicro2387

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing