Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of PPARS in inflammation and immunity

Key Points

  • Peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors that belong to the nuclear-hormone-receptor superfamily.

  • The PPARs can positively regulate gene transcription through their ability to heterodimerize with 9-cis-retinoic acid receptor (RXR) and bind to specific DNA sequences in the promoter regions of selective genes, known as peroxisome proliferator response elements (PPREs).

  • PPARs can negatively regulate gene transcription through their ability to antagonize several important signalling pathways using various transrepression mechanisms.

  • Activated PPARs regulate the inflammatory response through their ability to regulate the expression of several genes that are involved in inflammation.

  • The PPARs are expressed in a wide variety of tissues and cells of the immune system, including macrophages, dendritic cells (DCs), T cells and B cells.

  • The PPARs are important for the regulation of the immune response. This arises through the ability of these receptors to regulate DC and T-cell cytokine production, as well as lymphocyte proliferation.

Abstract

Lipids and lipid metabolism have well-documented regulatory effects on inflammatory processes. Recent work has highlighted the role of the peroxisome proliferator-activated receptors (PPARs) — a subset of the nuclear-hormone-receptor superfamily that are activated by various lipid species — in regulating inflammatory responses. Here, we describe how the PPARs, through their interactions with transcription factors and other cell-signalling systems, have important regulatory roles in innate and adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic overview of PPAR structure and ligand-induced activation.
Figure 2: Negative regulation of transcription factors by PPARs.
Figure 3: Molecular mechanisms of PPAR-mediated regulation of inflammatory responses.
Figure 4: A model describing a potential role for PPARγ in the inhibition of TH1-cell development.
Figure 5: Mechanisms by which PPARα and PPARγ inhibit the production of IL-2 and IFN-γ after T-cell activation.

Similar content being viewed by others

References

  1. Desvergne, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20, 649–688 (1999).

    CAS  PubMed  Google Scholar 

  2. Clark, RB. The role of PPARs in inflammation and immunity. J Leukoc Biol 71, 388–400 (2002).

    CAS  PubMed  Google Scholar 

  3. Chinetti, G. et al. Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages. J. Biol. Chem. 273, 25573–25580 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Jones, DC, Ding, X & Daynes, RA Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is expressed in resting murine lymphocytes. The PPARα in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem 277, 6838–6845 (2002).This paper, together with reference 83 , was the first to describe the presence of PPARα in lymphocytes and to establish a role for this nuclear receptor in the regulation of cytokine production by activated T cells.

    Article  CAS  PubMed  Google Scholar 

  5. Gosset, P. et al. Peroxisome proliferator-activated receptor γ activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol. 31, 2857–2865 (2001).This paper describes a role for PPARγ in the regulation of dendritic-cell maturation, and cytokine and chemokine production.

    Article  CAS  PubMed  Google Scholar 

  6. Harris, S. G. & Phipps, R. P. The nuclear receptor PPARγ is expressed by mouse T lymphocytes and PPARγ agonists induce apoptosis. Eur. J. Immunol. 31, 1098–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Alleva, D. G. et al. Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-γ: counter-regulatory activity by IFN-γ. J. Leukocyte Biol. 71, 677–685 (2002).

    CAS  PubMed  Google Scholar 

  8. Setoguchi, K. et al. Peroxisome proliferator-activated receptor-γ haploinsufficiency enhances B-cell proliferative responses and exacerbates experimentally induced arthritis. J. Clin. Invest. 108, 1667–1675 (2001).This study used Pparγ+/− mice to describe a role for PPARγ in B-cell physiology. It showed that these mice have increased levels of circulating IgG and IgM and are more susceptible to autoimmune diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rotondo, D. & Davidson, J. Prostaglandin and PPAR control of immune-cell function. Immunology 105, 20–22 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Padilla, J., Kaur, K., Cao, H. J., Smith, T. J. & Phipps, R. P. Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ12,14-PGJ2 induce apoptosis in normal and malignant B-lineage cells. J. Immunol. 165, 6941–6948 (2000).This was the first report to describe the presence of PPARγ in B cells.

    Article  CAS  PubMed  Google Scholar 

  11. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Corton, J. C., Anderson, S. P. & Stauber, A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Ann. Rev. Pharmacol. Toxicol. 40, 491–518 (2000).

    Article  CAS  Google Scholar 

  13. Gonzalez, F. J. The role of peroxisome proliferator-activated receptor-α in peroxisome proliferation, physiological homeostasis and chemical carcinogenesis. Adv. Exp. Med. Biol. 422, 109–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Dreyer, C. et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Laudet, V., Hanni, C., Coll, J., Catzeflis, F. & Stehelin, D. Evolution of the nuclear receptor gene superfamily. EMBO J. 11, 1003–1013 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyata, K. S., McCaw, S. E., Marcus, S. L., Rachubinski, R. A. & Capone, J. P. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene 148, 327–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Tugwood, J. D. et al. The mouse peroxisome proliferator-activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11, 433–439 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mascaro, C. et al. Characterization of a response element for peroxisomal proliferator-activated receptor (PPRE) in human muscle-type carnitine palmitoyltransferase I. Adv. Exp. Med. Biol. 466, 79–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Green, S. & Wahli, W. Peroxisome proliferator-activated receptors: finding the orphan a home. Mol. Cell. Endocrinol. 100, 149–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. IJpenberg, A., Jeannin, E., Wahli, W. & Desvergne, B. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J. Biol. Chem. 272, 20108–20117 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Gervois, P. et al. Fibrates increase human REV-ERBα expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol. Endocrinol. 13, 400–409 (1999).

    CAS  PubMed  Google Scholar 

  22. Zhu, Y., Qi, C., Calandra, C., Rao, M. S. & Reddy, J. K. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor-γ. Gene Expr. 6, 185–195 (1996).

    CAS  PubMed  Google Scholar 

  23. Zamir, I., Zhang, J. & Lazar, M. A. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11, 835–846 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Dowell, P. et al. Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor-α-interacting protein. J. Biol. Chem. 274, 15901–15907 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Shi, Y., Hon, M. & Evans, R. M. The peroxisome proliferator-activated receptor-δ, an integrator of transcriptional repression and nuclear-receptor signaling. Proc. Natl Acad. Sci. USA 99, 2613–2618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DiRenzo, J. et al. Peroxisome proliferator-activated receptors and retinoic-acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators and corepressors. Mol. Cell. Biol. 17, 2166–2176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dowell, P. et al. p300 functions as a coactivator for the peroxisome proliferator-activated receptor-α. J. Biol. Chem. 272, 33435–33443 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y., Qi, C., Jain, S., Rao, M. S. & Reddy, J. K. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J. Biol. Chem. 272, 25500–25506 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, C. X., Ito, M., Fondell, J. D., Fu, Z. Y. & Roeder, R. G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl Acad. Sci. USA 95, 7939–7944 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, H. E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gottlicher, M., Widmark, E., Li, Q. & Gustafsson, J. A. Fatty acids activate a chimera of the clofibric-acid-activated receptor and the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 89, 4653–4657 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kliewer, S. A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor-γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Shibata, T. et al. 15-deoxy-Δ12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J. Biol. Chem. 277, 10459–10466 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl Acad. Sci. USA 94, 4312–4317 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laffitte, B. A. et al. Autoregulation of the human liver X receptor α promoter. Mol. Cell. Biol. 21, 7558–7568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leibowitz, M. D. et al. Activation of PPARδ alters lipid metabolism in db/db mice. Fed. Eur. Biochem. Soc. Letts 473, 333–336 (2000).

    Article  CAS  Google Scholar 

  38. Oliver, W. R. Jr et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vosper, H. et al. The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J. Biol. Chem. 276, 44258–44265 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Delerive, P., Fruchart, J. C. & Staels, B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 169, 453–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Poynter, M. E. & Daynes, R. A. Peroxisome proliferator-activated receptor-α activation modulates cellular redox status, represses nuclear factor-κB signaling and reduces inflammatory cytokine production in aging. J. Biol. Chem. 273, 32833–32841 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Li, M., Pascual, G. & Glass, C. K. Peroxisome proliferator-activated receptor-γ-dependent repression of the inducible nitric oxide synthase gene. Mol. Cell. Biol. 20, 4699–4707 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delerive, P. et al. Peroxisome proliferator-activated receptor-α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Delerive, P. et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circulation Res. 85, 394–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Delerive, P., Gervois, P., Fruchart, J. C. & Staels, B. Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators. J. Biol. Chem. 275, 36703–36707 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Desreumaux, P. et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor-γ (PPARγ) heterodimer. A basis for new therapeutic strategies. J. Exp. Med. 193, 827–838 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan, N. S. et al. Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes Dev. 15, 3263–3277 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Devchand, P. R. et al. The PPARα–leukotriene-B4 pathway to inflammation control. Nature 384, 39–43 (1996).A key paper that used Pparα−/− mice to describe a role for PPARα in the regulation of inflammation.

    Article  CAS  PubMed  Google Scholar 

  50. Field, C. J., Johnson, I. R. & Schley, P. D. Nutrients and their role in host resistance to infection. J. Leukocyte Biol. 71, 16–32 (2002).

    CAS  PubMed  Google Scholar 

  51. Grimble, R. F. Nutritional modulation of immune function. Proc. Nutr. Soc. 60, 389–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Spencer, N. F., Poynter, M. E., Hennebold, J. D., Mu, H. H. & Daynes, R. A. Does DHEAS restore immune competence in aged animals through its capacity to function as a natural modulator of peroxisome activities? Ann. NY Acad. Sci. 774, 200–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Weksler, M. E. Immune senescence and adrenal steroids: immune dysregulation and the action of dehydroepiandrosterone (DHEA) in old animals. Eur. J. Clin. Pharmacol. 45, S21–S23 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Jump, D. B. & Clarke, S. D. Regulation of gene expression by dietary fat. Ann. Rev. Nutr. 19, 63–90 (1999).

    Article  CAS  Google Scholar 

  55. Peters, J. M. et al. Peroxisome proliferator-activated receptor-α required for gene induction by dehydroepiandrosterone-3 β-sulfate. Mol. Pharmacol. 50, 67–74 (1996).

    CAS  PubMed  Google Scholar 

  56. Staels, B. et al. Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature 393, 790–793 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, C., Ting, A. T. & Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kippenberger, S. et al. Activators of peroxisome proliferator-activated receptors protect human skin from ultraviolet-B-light-induced inflammation. J. Invest. Dermatol. 117, 1430–1436 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Combs, C. K., Bates, P., Karlo, J. C. & Landreth, G. E. Regulation of β-amyloid-stimulated proinflammatory responses by peroxisome proliferator-activated receptor-α. Neurochem. Int. 39, 449–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Gupta, R. A. et al. Activation of peroxisome proliferator-activated receptor γ suppresses nuclear factor-κB-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells. J. Biol. Chem. 276, 31059–31066 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Willson, T. M., Brown, P. J., Sternbach, D. D. & Henke, B. R. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Chawla, A. et al. PPAR-γ-dependent and -independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Med. 7, 48–52 (2001).This paper used macrophages derived from Pparγ−/− embryonic stem cells to describe PPARγ-independent and -dependant effects on the regulation of gene transcription.

    Article  CAS  PubMed  Google Scholar 

  63. Castrillo, A., Diaz-Guerra, M. J., Hortelano, S., Martin-Sanz, P. & Bosca, L. Inhibition of IκB kinase and IκB phosphorylation by 15-deoxy-Δ12,14-prostaglandin J2 in activated murine macrophages. Mol. Cell. Biol. 20, 1692–1698 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Straus, D. S. et al. 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc. Natl Acad. Sci. USA 97, 4844–4849 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rival, Y. et al. PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-κB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol. 435, 143–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Michalik, L. et al. Impaired skin-wound healing in peroxisome proliferator-activated receptor (PPAR)α and PPARβ mutant mice. J. Cell Biol. 154, 799–814 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peters, J. M. et al. Growth, adipose, brain and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol. 20, 5119–5128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol. 166, 7128–7135 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Komuves, L. G. et al. Keratinocyte differentiation in hyperproliferative epidermis: topical application of PPARα activators restores tissue homeostasis. J. Invest. Dermatol. 115, 361–367 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tsutsumi-Ishii, Y. & Nagaoka, I. NF-κB-mediated transcriptional regulation of human β-defensin-2 gene following lipopolysaccharide stimulation. J. Leukocyte Biol. 71, 154–162 (2002).

    CAS  PubMed  Google Scholar 

  71. Wada, A. et al. Helicobacter pylori-mediated transcriptional regulation of the human β-defensin-2 gene requires NF-κB. Cell. Microbiol. 3, 115–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Serghides, L. & Kain, K. C. Peroxisome proliferator-activated receptor-γ-retinoid X receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparum-parasitized erythrocytes and decrease malaria-induced TNF-α secretion by monocytes/macrophages. J. Immunol. 166, 6742–6748 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Hermanowski-Vosatka, A. et al. PPARα agonists reduce 11β-hydroxysteroid dehydrogenase type 1 in the liver. Biochem. Biophys. Res. Commun. 279, 330–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Berger, J. et al. Peroxisome proliferator-activated receptor-γ ligands inhibit adipocyte 11β-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem. 276, 12629–12635 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Yau, J. L. et al. Lack of tissue glucocorticoid reactivation in 11β-hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc. Natl Acad. Sci. USA 98, 4716–4721 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morton, N. M. et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity and glucose tolerance in 11β-hydroxysteroid dehydrogenase type 1 null mice. J. Biol. Chem. 276, 41293–41300 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Sandeep, T. C. & Walker, B. R. Pathophysiology of modulation of local glucocorticoid levels by 11β-hydroxysteroid dehydrogenases. Trends Endocrinol. Metab. 12, 446–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Steinman, R. M., Pack, M. & Inaba, K. Dendritic-cell development and maturation. Adv. Exp. Med. Biol. 417, 1–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Mellman, I., Turley, S. J. & Steinman, R. M. Antigen processing for amateurs and professionals. Trends Cell Biol. 8, 231–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Faveeuw, C. et al. Peroxisome proliferator-activated receptor-γ activators inhibit interleukin-12 production in murine dendritic cells. Fed. Eur. Biochem. Soc. Letts 486, 261–266 (2000).

    Article  CAS  Google Scholar 

  81. Yang, X. Y. et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor-γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem. 275, 4541–4544 (2000).This paper was one of the first to show that the activation of PPARγ regulates T-cell cytokine production through the repression of NFAT.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, P. et al. Inhibition of the transcription factors AP-1 and NF-κB in CD4 T cells by peroxisome proliferator-activated receptor-γ ligands. Int. Immunopharmacol. 1, 803–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Cunard, R. et al. Regulation of cytokine expression by ligands of peroxisome proliferator-activated receptors. J. Immunol. 168, 2795–2802 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Clark, R. B. et al. The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T-cell responses. J. Immunol. 164, 1364–1371 (2000).This paper was the first to show that activation of PPARγ regulates T-cell cytokine production.

    Article  CAS  PubMed  Google Scholar 

  85. Harris, S. G., Smith, R. S. & Phipps, R. P. 15-deoxy-Δ12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. J. Immunol. 168, 1372–1379 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Padilla, J., Leung, E. & Phipps, R. P. Human B lymphocytes and B lymphomas express PPAR-γ and are killed by PPAR-γ agonists. Clin. Immunol. 103, 22–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Yang, X. Y. et al. Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor-γ activated by macrophage-derived 12/15-lipoxygenase ligands. J. Biol. Chem. 277, 3973–3978 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, J. T. et al. Interleukin-4-dependent production of PPARγ ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Chtanova, T., Kemp, R. A., Sutherland, A. P., Ronchese, F. & Mackay, C. R. Gene microarrays reveal extensive differential gene expression in both CD4+ and CD8+ type-1 and type-2 T cells. J. Immunol. 167, 3057–3063 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. van Vollenhoven, R. F. Dehydroepiandrosterone in systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 26, 349–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Lucas, J. A., Ahmed, S. A., Casey, M. L. & MacDonald, P. C. Prevention of autoantibody formation and prolonged survival in New Zealand black/New Zealand white F1 mice fed dehydroisoandrosterone. J. Clin. Invest. 75, 2091–2093 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karmali, R. A., Hanrahan, R., Volkman, A. & Smith, N. Prostaglandins and essential fatty acids in regulation of autoimmunity and development of antibodies to DNA in NZB x NZW F1 mice. Prog Lipid Res. 20, 655–661 (1981).

    Article  CAS  PubMed  Google Scholar 

  94. Ben-Nathan, D., Padgett, D. A. & Loria, R. M. Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J. Med. Microbiol. 48, 425–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Rasmussen, K. R., Healey, M. C., Cheng, L. & Yang, S. Effects of dehydroepiandrosterone in immunosuppressed adult mice infected with Cryptosporidium parvum. J. Parasitol. 81, 429–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Danenberg, H. D., Ben-Yehuda, A., Zakay-Rones, Z. & Friedman, G. Dehydroepiandrosterone (DHEA) treatment reverses the impaired immune response of old mice to influenza vaccination and protects from influenza infection. Vaccine 13, 1445–1448 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Loria, R. M. & Padgett, D. A. Androstenediol regulates systemic resistance against lethal infections in mice. Ann. N Y Acad. Sci. 685, 293–295 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Loria, R. M. & Padgett, D. A. Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol. 127, 103–115 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Kornbluth, A. What happened to drug trials in ulcerative colitis? Problems, PPARs, placebos and (possible) progress. Am. J. Gastroenterol. 96, 3232–3234 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Lewis, J. D. et al. An open-label trial of the PPAR-γ ligand rosiglitazone for active ulcerative colitis. Am. J. Gastroenterol. 96, 3323–3328 (2001).

    CAS  PubMed  Google Scholar 

  101. Tan, M. H. Current treatment of insulin resistance in type 2 diabetes mellitus. Int J Clin Pract Suppl. 54–62 (2000).

  102. Molavi, B., Rasouli, N. & Mehta, J. L. Peroxisome proliferator-activated receptor ligands as antiatherogenic agents: panacea or another Pandora's box? J. Cardiovasc. Pharmacol. Ther. 7, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Robins, S. J. PPARα ligands and clinical trials: cardiovascular risk reduction with fibrates. J. Cardiovasc. Risk 8, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Palakurthi, S. S., Aktas, H., Grubissich, L. M., Mortensen, R. M. & Halperin, J. A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor-γ and mediated by inhibition of translation initiation. Cancer Res. 61, 6213–6218 (2001).

    CAS  PubMed  Google Scholar 

  105. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Tolon, R. M., Castillo, A. I., Jimenez-Lara, A. M. & Aranda, A. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol. Cell. Biol. 20, 8793–8802 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yi, Y W. et al. Gadd45 family proteins are coactivators of nuclear hormone receptors. Biochem. Biophys. Res. Commun. 272, 193–198 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, a Browning Foundation grant and DVA Medical Research Funds. D.C.J. is supported by a National Institutes of Health DHHS National Institute of Diabetes and Digestive and Kidney Diseases Hematology Research Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Daynes.

Related links

Related links

DATABASES

InterPro

Rel-homology domain

LocusLink

ABCA1

CBP

CD36

CD40

CD40L

CD80

CD86

E-selectin

ETS1

GADD45

HDACs

HSD11B1

ICAM1

IFN-γ

IL-1β

IL-2

IL-4

IL-6

IL-12

iNOS

IP-10

JUN

LXRα

MIP1α

MMP9

MSR1

NFAT

NF-κB

p65

p300

PPARα

PPARβ/δ

PPARγ

RANTES

RXR

SRC1

STATs

T-BET

TLR2

TNF

VCAM1

Medscape DrugInfo

rosiglitazone

OMIM

type-2 diabetes

ulcerative colitis

Glossary

EICOSANOIDS

These are fatty-acid derivatives, derived mainly from arachidonic acid, that have a wide variety of biological activities. There are four main classes of eicosanoid — the prostaglandins, prostacyclins, thromboxanes and leukotrienes — derived from the activities of cyclooxygenases and lipoxygenases on membrane-associated fatty-acid precursors.

TRANSREPRESSION

The process by which nuclear hormone receptors antagonize several signal-transduction pathways through various DNA-dependent and -independent mechanisms.

PEROXISOME

A cytoplasmic organelle that has essential roles in antioxidant defence, cholesterol and bile-acid synthesis, eicosanoid metabolism, and the β- and ω-oxidation of long-chain and very-long-chain fatty acids.

AGONIST-INDUCED ACTIVATION

A process in which ligand binding to an inactive receptor causes conformational changes that give the receptor unique biological properties. Agonist dissociation generally results in the receptor returning to an inactive state.

TRANSCRIPTION CO-ACTIVATORS

These are protein complexes that associate with the ligand-binding domain of the PPARs and other transcription factors; they reorganize chromatin templates and recruit the basal transcriptional machinery to the promoter region.

TRANSCRIPTION CO-REPRESSORS

These are protein complexes, including NCoR and SMRT, that, when associated with nuclear hormone receptors, recruit histone-deacetylase complexes to reverse the actions of histone acetyltransferases and inhibit gene transcription.

PEROXISOMAL β-OXIDATION

An enzyme-catalysed process that occurs in peroxisomes and functions to shorten very-long-chain fatty acids (>22 carbon atoms) so that they can be degraded by the mitochondrial β-oxidation system.

ω-OXIDATION

A fatty-acid oxidation pathway that is catalysed by enzymes in the endoplasmic reticulum (microsomes) and involves fatty-acid hydroxylation by cytochrome P450, which results in medium- and long-chain fatty acids being converted to dicarboxylic acids.

INSULIN SENSITIZATION

A general term that is used to describe various pathways and/or proteins that enhance the activities of insulin in insulin-sensitive tissues.

CD36

CD36 is a highly glycosylated, single-chain, 88-kDa protein that binds oxidized low-density lipoproteins, fatty acids, phospholipids (including phosphatidylinositol and phosphatidylserine) and the proteins collagen and thrombospondin. CD36 is a class-B scavenger receptor with a broad range of ligand specificities that has important roles in fatty-acid and lipoprotein metabolism, clearance of apoptotic cells and anti-angiogenesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daynes, R., Jones, D. Emerging roles of PPARS in inflammation and immunity. Nat Rev Immunol 2, 748–759 (2002). https://doi.org/10.1038/nri912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing