Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Indirect monitoring of lung inflammation

Abstract

The assessment of airway inflammation by non-invasive methods could provide a signal to start anti-inflammatory treatment before the onset of symptoms and the impairment of lung function. It could also be useful in the follow-up of patients with lung disease, and for guiding drug treatment. Measuring inflammatory markers in exhaled breath condensate is potentially the easiest way to quantify lung inflammation. The clinical applicability of this method could facilitate the practice of respiratory medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomarkers of airway inflammation.
Figure 2: Schematic representation of EBC collecting systems.

Similar content being viewed by others

References

  1. Wielders, P. L. M. L. & Dekhuijzen, P. N. R. Disease monitoring in chronic obstructive pulmonary disease: is there a role for biomarkers? Eur. Respir. J. 10, 2443–2445 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, P. J., Chung, K. F. & Page, C. P. Inflammatory mediators of asthma: an update. Pharmacol. Rev. 50, 515–596 (1998).

    CAS  PubMed  Google Scholar 

  3. Rutgers, S. R., Timens, W., Kauffman, H. F. & Postma, D. S. Markers of active airway inflammation and remodelling in chronic obstructive pulmonary disease. Clin. Exp. Allergy 31, 193–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Adelroth, E. How to measure airway inflammation: bronchoalveolar lavage and airway biopsies. Can. Respir. J. 5, 18A–21A (1998).

    PubMed  Google Scholar 

  5. Berlyne, G. S., Parameswaran, K., Kamada, D., Efthimiadis, A. & Hargreave, F. E. A comparison of exhaled nitric oxide and induced sputum as markers of airway inflammation. J. Allergy Clin. Immunol. 106, 638–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mutlu, G. M., Garey, K. W., Robbins, R. A., Danziger, L. H. & Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 164, 731–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Kharitonov, S. A. & Barnes, P. J. Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Dwyer, T. M. Expired breath condensate (EBC) and the ultimate disposition of airway surface liquid (ASL). Am. J. Respir. Crit. Care Med. 163, A406 (2001).

    Article  Google Scholar 

  9. Carpenter, C. T., Price, P. V. & Christman, B. W. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 114, 1653–1659 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Huszar, E., Vass, G., Horvath, I. & Herjavecz, I. Expired adenosine in breath condensate of healthy subjects and patients with allergic rhinitis and asthma. Am. J. Respir. Crit. Care Med. 163, A48 (2001).

    Google Scholar 

  11. Hunt, J. F. et al. Endogenous airway acidification. Implications for asthma pathophysiology. Am. J. Respir. Crit. Care Med. 161, 694–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Scheideler, L., Manke, H. G., Schwulera, U., Inacker, O. & Hammerle, H. Detection of nonvolatile macromolecules in breath: a possible diagnostic tool? Am. Rev. Respir. Dis. 148, 778–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Cunningham, S., McColm, J. R., Ho, L. P., Greening, A. P. & Marshall, T. G. Measurement of inflammatory markers in the breath condensate of children with cystic fibrosis. Eur. Respir. J. 15, 955–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gessner, C., Kuhn, H., Schauer, J. & Wirtz, H. Amplification of DNA from breath condensate of volunteers and patients with non small cell lung cancer (NSCLC). Am. J. Respir. Crit. Care Med. 163, A482 (2001).

    Google Scholar 

  15. Montuschi, P. et al. Increased 8-isoprostane, a biomarker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 160, 216–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Horvath, I. et al. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med. 158, 1042–1046 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Montuschi, P. et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 162, 1175–1177 (2001).

    Article  Google Scholar 

  18. Hanazawa, T., Kharitonov, S. A. & Barnes, P. J. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am. J. Respir. Crit. Care Med. 162, 1273–1276 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Griese, M., Latzin, P. & Beck, J. A noninvasive method to collect nasally exhaled air condensate in humans of all ages. Eur. J. Clin. Invest. 31, 915–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Schleiss, M. B. et al. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur. Respir. J. 16, 1115–1118 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Montuschi, P. et al. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55, 205–209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rickmann, J. et al. Breath condensate reflects different compartments of respiratory tract depending on ventilation pattern. Am. J. Respir. Crit. Care Med. 163, A407 (2001).

    Google Scholar 

  23. Howarth, P. H. Leukotrienes in rhinitis. Am. J. Respir. Crit. Care Med. 161, S133–S136 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, D. Y., Smitz, J. & Clement, P. Prostaglandin D2 measurement in nasal secretions is not a reliable marker for mast cell activation in atopic patients. Clin. Exp. Allergy 25, 1228–1234 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Zakrzewski, J. T., Barnes, N. C., Costello, J. F. & Piper, P. J. Lipid mediators in cystic fibrosis and chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 136, 779–782 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. McKinney, E. T., Shouri, R., Hunt, R. S., Ahokas, R. A. & Sibai, B. M. Plasma, urinary, and salivary 8-epi-prostaglandin F2 levels in normotensive and preeclamptic pregnancies. Am. J. Obstet. Gynecol. 183, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Nowak, D., Kalucka, S., Bialasiewicz, P. & Krol, M. Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic. Biol. Med. 15, 178–186 (2001)

    Article  Google Scholar 

  28. Corradi, M. et al. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am. J. Respir. Crit. Care Med. 163, 854–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Montuschi, P. & Barnes, P. J. Exhaled leukotrienes and prostaglandins in asthma. J. Allergy Clin. Immunol. (in the press).

  30. Montuschi, P., Ciabattoni, G., Kharitonov, S. A. & Barnes, P. J. Non selective cyclo-oxygenase inhibition decreases exhaled prostaglandin E2 in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163, A908 (2001).

    Google Scholar 

  31. Dekhuijzen, P. N. et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 154, 813–816 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jobsis, Q. et al. Hydrogen peroxide in exhaled air of healthy children: reference values. Eur. Respir. J. 12, 483–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Ho, L. P., Faccenda, J., Innes, J. A. & Greening, A. P. Expired hydrogen peroxide in breath condensate of cystic fibrosis patients. Eur. Respir. J. 13, 103–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Zappacosta, B. et al. A fast chemiluminescent method for H2O2 measurement in exhaled breath condensate. Clin. Chim. Acta. 310, 187–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Balint, B. et al. Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. Eur. Respir. J. 17, 1201–1207 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ho, L. P., Innes, J. A. & Greening, A. P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax 53, 680–684 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balint, B., Donnelly, L. E., Hanazawa, T., Kharitonov, S. A. & Barnes, P. J. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 56, 456–461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diegel, H., Dauletbaev, N., Rickmann, J., Wagner, T. O. F. & Bargon, J. Glutathione in breath condensate samples of healthy individuals and patients with obstructive lung disease. Am. J. Respir. Crit. Care Med. 163, A408 (2001).

    Google Scholar 

Download references

Acknowledgements

P.M. is the recipient of a Research Fellowship from the National Research Council of Italy.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

albumin

amylase

COX

interleukin-1β

interleukin-8

MPO

NOS

SOD

tumour-necrosis factor-α

FURTHER INFORMATION

asthma

chronic obstructive pulmonary disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montuschi, P. Indirect monitoring of lung inflammation. Nat Rev Drug Discov 1, 238–242 (2002). https://doi.org/10.1038/nrd751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd751

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing