Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting non-malignant disorders with tyrosine kinase inhibitors

Key Points

  • Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways.

  • Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia. Other compounds with different spectra of kinase inhibition are currently used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer.

  • More recently, the therapeutic potential of TKIs in non-malignant disorders has been recognized.

  • Clinical research has progressed far in pulmonary vascular disorders: imatinib has already undergone a randomized, placebo-controlled Phase II trial, in which it had good safety and tolerability, and provided substantial haemodynamic improvement. A Phase III trial of this compound in pulmonary arterial hypertension is ongoing.

  • In addition, recent preclinical reports support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis, glomerulonephritis and arthritis.

  • In addition to questions of selectivity and non-selectivity, aspects of safety and long-term administration of tyrosine kinase inhibitors in non-malignant indications require careful consideration.

Abstract

Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways. Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia, and other TKIs with different spectra of kinase inhibition are used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer. Studies also support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, and in benign-proliferative disorders including pulmonary hypertension, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis and glomerulonephritis. In this Review, we provide an overview of the most recent developments — both experimental as well as clinical — regarding the therapeutic potential of TKIs in non-malignant disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General signalling pathways of receptor tyrosine kinases in cancer.
Figure 2: Comparison of receptor tyrosine kinase signalling in cardiomyocytes, smooth muscle cells and myofibroblasts.
Figure 3: Timeline breakthrough discoveries in RTK signal transduction in health and disease (cancerous and non-malignant).

Similar content being viewed by others

References

  1. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000). This article gives a comprehensive overview of receptor tyrosine kinase-related signalling and physiological, as well as pathophysiological, implications.

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 583–605 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, F., Zeltwanger, S., Yang, I. C., Nairn, A. C. & Hwang, T. C. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J. Gen. Physiol. 111, 477–490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong, W. S. & Leong, K. P. Tyrosine kinase inhibitors: a new approach for asthma. Biochim. Biophys. Acta 1697, 53–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Malhotra, S., Man, S. F. & Sin, D. D. Emerging drugs for the treatment of chronic obstructive pulmonary disease. Expert Opin. Emerg. Drugs 11, 275–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Beales, I. L. & Calam, J. Stimulation of IL-8 production in human gastric epithelial cells by Helicobacter pylori, IL-1beta and TNF-alpha requires tyrosine kinase activity, but not protein kinase C. Cytokine 9, 514–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Bassat, H. Biological activity of tyrosine kinase inhibitors: novel agents for psoriasis therapy. Curr. Opin. Investig. Drugs 2, 1539–1545 (2001).

    CAS  PubMed  Google Scholar 

  9. Ben-Bassat, H. Tyrphostins that suppress the growth of human papilloma virus 16-immortalized human keratinocytes. J. Pharmacol. Exp. Ther. 290, 1442–1457 (1999).

    CAS  PubMed  Google Scholar 

  10. Novogrodsky, A. et al. Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors. Science 264, 1319–1322 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Chappelow, A. V. & Kaiser, P. K. Neovascular age-related macular degeneration: potential therapies. Drugs 68, 1029–1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Song, R. X. et al. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J. Steroid Biochem. Mol. Biol. 118, 219–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    Article  CAS  Google Scholar 

  14. Hubbard, S. R. & Miller, W. T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 19, 117–123 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, H. et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell 27, 717–730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giehl, K., Skripczynski, B., Mansard, A., Menke, A. & Gierschik, P. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 19, 2930–2942 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Krause, D. S. & Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Arteaga, C. L. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J. Clin. Oncol. 19, S32–S40 (2001).

    Google Scholar 

  20. Witton, C. J., Reeves, J. R., Going, J. J., Cooke, T. G. & Bartlett, J. M. Expression of the HER1–4 family of receptor tyrosine kinases in breast cancer. J. Pathol. 200, 290–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Libermann, T. A. et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313, 144–147 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Olapade-Olaopa, E. O. et al. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br. J. Cancer 82, 186–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sainsbury, J. R., Farndon, J. R., Sherbet, G. V. & Harris, A. L. Epidermal-growth-factor receptors and oestrogen receptors in human breast cancer. Lancet 1, 364–366 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Ooi, A. et al. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod. Pathol. 17, 895–904 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Messa, C., Russo, F., Caruso, M. G. & Di, L. A. EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol. 37, 285–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Hida, T. et al. Gefitinib for the treatment of non-small-cell lung cancer. Expert Rev. Anticancer Ther. 9, 17–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Gorgoulis, V. et al. Expression of EGF, TGF-alpha and EGFR in squamous cell lung carcinomas. Anticancer Res. 12, 1183–1187 (1992).

    CAS  PubMed  Google Scholar 

  29. Hermanson, M. et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res. 56, 164–171 (1996).

    CAS  PubMed  Google Scholar 

  30. Matei, D. et al. Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer 113, 723–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299, 708–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hirota, S. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125, 660–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Sjoblom, T. et al. Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF βR fusion protein. Oncogene 18, 7055–7062 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Martinet, Y., Rom, W. N., Grotendorst, G. R., Martin, G. R. & Crystal, R. G. Exaggerated spontaneous release of platelet-derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 317, 202–209 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Kallio, E. A., Koskinen, P. K., Aavik, E., Buchdunger, E. & Lemstrom, K. B. Role of platelet-derived growth factor in obliterative bronchiolitis (chronic rejection) in the rat. Am. J. Respir. Crit. Care Med. 160, 1324–1332 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Tikkanen, J. M. et al. Role of platelet-derived growth factor and vascular endothelial growth factor in obliterative airway disease. Am. J. Respir. Crit. Care Med. 174, 1145–1152 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ferns, G. A. et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 253, 1129–1132 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Schermuly, R. T. A. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005). The first description of the therapeutic use of imatinib in experimental pulmonary hypertension and proof of PDGFR upregulation in human PAH tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jackson, M. W., Bentel, J. M. & Tilley, W. D. Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J. Urol. 157, 2323–2328 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Kang, M. A., Kim, K. Y., Seol, J. Y., Kim, K. C. & Nam, M. J. The growth inhibition of hepatoma by gene transfer of antisense vascular endothelial growth factor. J. Gene Med. 2, 289–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R. & Ellis, L. M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55, 3964–3968 (1995).

    CAS  PubMed  Google Scholar 

  42. Takahashi, Y. et al. Significance of vessel count and vascular endothelial growth factor and its receptor (KDR) in intestinal-type gastric cancer. Clin. Cancer Res. 2, 1679–1684 (1996).

    CAS  PubMed  Google Scholar 

  43. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, G. J. & Forough, R. Fibroblast growth factors, fibroblast growth factor receptors, diseases, and drugs. Recent Pat. Cardiovasc. Drug Discov. 1, 211–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hartog, H., Wesseling, J., Boezen, H. M. & van der Graaf, W. T. The insulin-like growth factor 1 receptor in cancer: old focus, new future. Eur. J. Cancer 43, 1895–1904 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Gontarewicz, A. & Brummendorf, T. H. Danusertib (formerly PHA-739358) — a novel combined pan-Aurora kinases and third generation Bcr-Abl tyrosine kinase inhibitor. Recent Results Cancer Res. 184, 199–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnol. 26, 127–132 (2008).

    Article  CAS  Google Scholar 

  50. Nef, H. M., Mollmann, H., Hamm, C., Grimminger, F. & Ghofrani, H. A. Pulmonary hypertension: updated classification and management of pulmonary hypertension. Heart 96, 552–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Barst, R. J. et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 334, 296–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Rubin, L. J. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Humbert, M. et al. Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 11, 554–559 (1998).

    CAS  PubMed  Google Scholar 

  56. Wedgwood, S. et al. Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr. Res. 61, 32–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Merklinger, S. L., Jones, P. L., Martinez, E. C. & Rabinovitch, M. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112, 423–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Taraseviciene-Stewart, L. et al. Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L668–L676 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Christou, H., Yoshida, A., Arthur, V., Morita, T. & Kourembanas, S. Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 18, 768–776 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Balasubramaniam, V. et al. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L826–L833 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Cohen, M. H. et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin. Cancer Res. 8, 935–942 (2002).

    CAS  PubMed  Google Scholar 

  62. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  63. Heinrich, M. C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932 (2000).

    CAS  PubMed  Google Scholar 

  64. Hunter, T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J. Clin. Invest. 117, 2036–2043 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perros, F. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 178, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Ghofrani, H. A., Seeger, W. & Grimminger, F. Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353, 1412–1413 (2005). The first description of the use of imatinib for the treatment of pulmonary hypertension.

    Article  CAS  PubMed  Google Scholar 

  67. Patterson, K. C., Weissmann, A., Ahmadi, T. & Farber, H. W. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann. Intern. Med. 145, 152–153 (2006).

    Article  PubMed  Google Scholar 

  68. Souza, R., Sitbon, O., Parent, F., Simonneau, G. & Humbert, M. Long term imatinib treatment in pulmonary arterial hypertension. Thorax 61, 736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghofrani, H. A. et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med. 25 (2010).

  70. Perros, F. et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur. Respir. J. 29, 462–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Mitani, Y. et al. Mast cell chymase in pulmonary hypertension. Thorax 54, 88–90 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ushio-Fukai, M. et al. cAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Circ. Res. 97, 829–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Daniels, C. E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGFβ and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004). The first publication on the therapeutic utility of imatinib in experimental lung fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Med. 12, 908–916 (2006). An interesting paper with a strong preclinical indication of potential cardiotoxicity of imatinib, and concomitant presentation of 10 patients developing left heart impairment when treated with imatinib for chronic myeloid leukaemia.

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez, A. et al. An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J. Clin. Invest. 117, 4044–4054 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, P., Oparil, S., Sun, J. Z., Thompson, J. A. & Chen, Y. F. Fibroblast growth factor mediates hypoxia-induced endothelin — a receptor expression in lung artery smooth muscle cells. J. Appl. Physiol. 95, 643–651 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Quinn, T. P., Schlueter, M., Soifer, S. J. & Gutierrez, J. A. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L897–L903 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kwapiszewska, G. et al. Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension. Respir. Res. 6, 109 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Izikki, M. et al. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J. Clin. Invest. 119, 512–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mark, R. J., Keller, J. N., Kruman, I. & Mattson, M. P. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. 756, 205–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Jones, P. L. & Rabinovitch, M. Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ. Res. 79, 1131–1142 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Jones, P. L., Cowan, K. N. & Rabinovitch, M. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am. J. Pathol. 150, 1349–1360 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dahal, B. K. et al. Role of epidermal growth factor inhibition in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 181, 158–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Gospodarowicz, D., Abraham, J. A. & Schilling, J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl Acad. Sci. USA 86, 7311–7315 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    CAS  PubMed  Google Scholar 

  87. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Gluzman-Poltorak, Z., Cohen, T., Herzog, Y. & Neufeld, G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J. Biol. Chem. 275, 18040–18045 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Olofsson, B. et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl Acad. Sci. USA 95, 11709–11714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  PubMed  Google Scholar 

  96. Eichmann, A. et al. Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development 125, 743–752 (1998).

    PubMed  Google Scholar 

  97. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Geiger, R. et al. Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. J. Pathol. 191, 202–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Tuder, R. M. et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J. Pathol. 195, 367–374 (2001). A landmark paper on the role of disordered angiogenesis as a driving force for progressive pulmonary vascular remodelling in human pulmonary hypertension.

    Article  CAS  PubMed  Google Scholar 

  100. Taraseviciene-Stewart, L. et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J. 15, 427–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Taraseviciene-Stewart, L. et al. Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am. J. Respir. Crit. Care Med. 175, 1280–1289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tuder, R. M. et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell. Mol. Biol. 29, 88–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Voelkel, N. F., Vandivier, R. W. & Tuder, R. M. Vascular endothelial growth factor in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L209–L221 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Wong, W. K., Knowles, J. A. & Morse, J. H. Bone morphogenetic protein receptor type II C-terminus interacts with c-Src: implication for a role in pulmonary arterial hypertension. Am. J. Respir. Cell. Mol. Biol. 33, 438–446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aono, Y. et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 171, 1279–1285 (2005).

    Article  PubMed  Google Scholar 

  107. Abdollahi, A. et al. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J. Exp. Med. 201, 925–935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vuorinen, K., Gao, F., Oury, T. D., Kinnula, V. L. & Myllarniemi, M. Imatinib mesylate inhibits fibrogenesis in asbestos-induced interstitial pneumonia. Exp. Lung Res. 33, 357–373 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Daniels, C. E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Chaudhary, N. I. et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J. 29, 976–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Hilberg, F. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 68, 4774–4782 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006). An intriguing report on the influence of activating autoantibodies against PDGFR in patients with scleroderma on disease severity and prognosis.

    Article  CAS  PubMed  Google Scholar 

  113. Ludwicka, A. et al. Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J. Rheumatol. 22, 1876–1883 (1995).

    CAS  PubMed  Google Scholar 

  114. Soria, A. et al. The effect of imatinib (Glivec) on scleroderma and normal dermal fibroblasts: a preclinical study. Dermatology 216, 109–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Sabnani, I. et al. A novel therapeutic approach to the treatment of scleroderma-associated pulmonary complications: safety and efficacy of combination therapy with imatinib and cyclophosphamide. Rheumatology 48, 49–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Kurogi, Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med. Res. Rev. 23, 15–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Floege, J. et al. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J. Clin. Invest. 92, 2952–2962 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iyoda, M. et al. Imatinib suppresses cryoglobulinemia and secondary membranoproliferative glomerulonephritis. J. Am. Soc. Nephrol. 20, 68–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zoja, C. et al. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 70, 97–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Gilbert, R. E. et al. PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomerulonephritis. Kidney Int. 59, 1324–1332 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Hirai, T. et al. PDGF receptor tyrosine kinase inhibitor suppresses mesangial cell proliferation involving STAT3 activation. Clin. Exp. Immunol. 144, 353–361 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stanczyk, J., Ospelt, C. & Gay, S. Is there a future for small molecule drugs in the treatment of rheumatic diseases? Curr. Opin. Rheumatol. 20, 257–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Milici, A. J. et al. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res. Ther. 10, R14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kremer, J. M. et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690550 versus placebo. Arthritis Rheum. 60, 1895–1905 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Coombs, J. H. et al. Improved pain, physical functioning, and health status in rheumatoid arthritis patients treated with CP-690550, an orally active Janus kinase (JAK) inhibitor: results from a randomized, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 8, 413–416 (2009).

    Google Scholar 

  126. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid Arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    Article  CAS  Google Scholar 

  127. Tebib, J. et al. Masitinib in the treatment of active rheumatoid arthritis: results of a multicentre, open-label, dose-ranging, phase 2a study. Arthritis Res. Ther. 11, R95 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Konda, V. R., Desai, A., Darland, G., Bland, J. S. & Tripp, M. L. META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis. Arthritis Rheum. 62, 1683–1692 (2010). Interesting work on the role of Bruton's tyrosine kinase in a model of experimental rheumatoid arthritis.

  129. Gourishankar, S., Turner, P. & Halloran, P. New developments in immunosuppressive therapy in renal transplantation. Expert Opin. Biol. Ther. 2, 483–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Kawamura, M. et al. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl Acad. Sci. USA 91, 6374–6378 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Deuse, T. et al. Novel immunosuppression: R348, a JAK3- and Syk-inhibitor attenuates acute cardiac allograft rejection. Transplantation 85, 885–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Borie, D. C. et al. Immunosuppression by the JAK3 inhibitor CP-690550 delays rejection and significantly prolongs kidney allograft survival in nonhuman primates. Transplantation 79, 791–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Kudlacz, E. et al. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am. J. Transplant 4, 51–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Podder, H. & Kahan, B. D. Janus kinase 3: a novel target for selective transplant immunosupression. Expert Opin. Ther. Targets 8, 613–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Karck, M. et al. Inhibition of aortic allograft vasculopathy by local delivery of platelet-derived growth factor receptor tyrosine-kinase blocker AG-1295. Transplantation 74, 1335–1341 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Burchat, A. et al. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorg. Med. Chem. Lett. 16, 118–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Rev. Cancer 7, 332–344 (2007). Comprehensive overview on possible mechanisms of cardiotoxicity of tyrosine kinase inhibitors.

    Article  CAS  Google Scholar 

  139. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Hochhaus, A. et al. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood 111, 1039–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Verweij, J. et al. Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analyis of EORTC-ISG-AGITG study 62005. Eur. J. Can. 43, 974–978 (2007).

    Article  CAS  Google Scholar 

  142. Perik, P. J. et al. Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity. Ann. Oncol. 19, 359–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Ribeiro, A. L. et al. An evaluation of the cardiotoxicity of imatinib mesylate. Leukemia Res. 32, 1809–1814 (2008).

    Article  CAS  Google Scholar 

  144. Will, Y. et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol. Sci. 106, 153–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Torsoni, A. S. et al. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ. Res. 93, 140–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Nadruz, W. et al. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc. Res. 68, 87–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Marin, T. M. et al. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/src and mtor pathways. Circ. Res. 103, 813–824 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Takeishi, Y. et al. Src and multiple map kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J. Mol. Cell. Cardiol. 33, 1637–1648 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Onan, D., Pipolo, L., Yang, E., Hannan, R. D. & Thomas, W. G. Urotensin II promotes hypertrophy of cardiac myocytes via mitogen-activated protein kinases. Mol. Endocrinol. 18, 2344–2354 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Dwyer, J. P. et al. Myocardial gene expression associated with genetic cardiac hypertrophy in the absence of hypertension. Hypertens. Res. 31, 941–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Oudit, G. Y. & Penninger, J. M. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc. Res. 8, 250–260 (2009).

    Google Scholar 

  152. Beckles, D. L., Mascareno, E. & Siddiqui, M. A. Q. Inhibition of Jak2 phosphorylation attenuates pressure overload cardiac hypertrophy. Vascul. Pharmacol. 45, 350–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Klein, M. et al. Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation 118, 2081–2090 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Kagiyama, S., Qian, K., Kagiyama, T. & Phillips, M. I. Antisense to epidermal growth factor receptor prevents the development of left ventricular hypertrophy. Hypertension 41, 824–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Smith, N. J., Chan, H. W., Osborne, J. E., Thomas, W. G. & Hannan, R. D. Hijacking epidermal growth factor receptors by angiotensin II: new possibilities for understanding and treating cardiac hypertrophy. Cell. Mol. Life Sci. 61, 2695–2703 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Park, Y. H. et al. BNP as a marker of the heart failure in the treatment of imatinib mesylate. Cancer Lett. 243, 16–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Hazarika, M. et al. Tasigna for chronic and accelerated phase Philadelphia chromosome — positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin. Cancer Res. 14, 5325–5331 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Brave, M. et al. Sprycel for chronic myeloid leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin. Cancer Res. 14, 352–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370, 2011–2019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Khakoo, A. Y. et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer 112, 2500–2508 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Telli, M. L., Witteles, R. M., Fisher, G. A. & Srinivas, S. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann. Oncol. 19, 1613–1618 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Russo, P. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma: Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, Ruhsam M, Hejna M, Schmidinger H. Urologic Oncol. Semin. Original Invest. 27, 103–104 (2009).

    Google Scholar 

  163. Schmidinger, M. et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 26, 5204–5212 (2008).

    Article  PubMed  Google Scholar 

  164. Kenagy, R. D., Hart, C. E., Stetler-Stevenson, W. G. & Clowes, A. W. Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived growth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation 96, 3555–3560 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Banai, S. et al. Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries. Cardiovasc. Res. 64, 165–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Zohlnhofer, D. et al. A randomized, double-blind, placebo-controlled trial on restenosis prevention by the receptor tyrosine kinase inhibitor imatinib. J. Am. Coll. Cardiol. 46, 1999–2003 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Hacker, T. A., Griffin, M. O., Guttormsen, B., Stoker, S. & Wolff, M. R. Platelet-derived growth factor receptor antagonist STI571 (imatinib mesylate) inhibits human vascular smooth muscle proliferation and migration in vitro but not in vivo. J. Invasive Cardiol. 19, 269–274 (2007).

    PubMed  Google Scholar 

  168. Serruys, P. W. et al. Effect of an anti-PDGF-beta-receptor-blocking antibody on restenosis in patients undergoing elective stent placement. Int. J. Cardiovasc. Intervent. 5, 214–222 (2003).

    Article  PubMed  Google Scholar 

  169. Klocke, R., Hasib, L. & Nikol, S. Recently patented applications of homologous cellular and extracellular agents as therapeutics or targets for the prevention of restenosis post-angioplasty. Recent Pat. Cardiovasc. Drug Discov. 1, 57–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 (1993).

    Article  CAS  PubMed  Google Scholar 

  171. Hansson, G. K., Jonasson, L., Seifert, P. S. & Stemme, S. Immune mechanisms in atherosclerosis. Arteriosclerosis 9, 567–578 (1989).

    Article  CAS  PubMed  Google Scholar 

  172. Libby, P., Warner, S. J., Salomon, R. N. & Birinyi, L. K. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. N. Engl. J. Med. 318, 1493–1498 (1988).

    Article  CAS  PubMed  Google Scholar 

  173. Misiakos, E. P. et al. Expression of PDGF-A, TGFb and VCAM-1 during the developmental stages of experimental atherosclerosis. Eur. Surg. Res. 33, 264–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Martinet, Y. et al. Activated human monocytes express the c-sis proto-oncogene and release a mediator showing PDGF-like activity. Nature 319, 158–160 (1986).

    Article  CAS  PubMed  Google Scholar 

  175. Uchida, K., Sasahara, M., Morigami, N., Hazama, F. & Kinoshita, M. Expression of platelet-derived growth factor B-chain in neointimal smooth muscle cells of balloon injured rabbit femoral arteries. Atherosclerosis 124, 9–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Thomas, J. A. et al. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am. J. Physiol. Heart Circ. Physiol. 296, H442–H452 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Karvinen, H. et al. PDGF-C and -D and their receptors PDGFR-alpha and PDGFR-beta in atherosclerotic human arteries. Eur. J. Clin. Invest. 39, 320–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Rubin, K. et al. Induction of B-type receptors for platelet-derived growth factor in vascular inflammation: possible implications for development of vascular proliferative lesions. Lancet 1, 1353–1356 (1988).

    Article  CAS  PubMed  Google Scholar 

  179. Leppanen, O. et al. Intimal hyperplasia recurs after removal of PDGF-AB and -BB inhibition in the rat carotid artery injury model. Arterioscler. Thromb. Vasc. Biol. 20, E89–E95 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Banai, S. et al. PDGF-receptor tyrosine kinase blocker AG1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine. Circulation 97, 1960–1969 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Yamasaki, Y. et al. Weekly dosing with the platelet-derived growth factor receptor tyrosine kinase inhibitor SU9518 significantly inhibits arterial stenosis. Circ. Res. 88, 630–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Giese, N. A. et al. The role of alpha and beta platelet-derived growth factor receptor in the vascular response to injury in nonhuman primates. Arterioscler. Thromb. Vasc. Biol. 19, 900–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. Hart, C. E. et al. PDGFbeta receptor blockade inhibits intimal hyperplasia in the baboon. Circulation 99, 564–569 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Bilder, G. et al. Restenosis following angioplasty in the swine coronary artery is inhibited by an orally active PDGF-receptor tyrosine kinase inhibitor, RPR101511A. Circulation 99, 103292–103299 (1999).

    Article  Google Scholar 

  185. Sihvola, R. et al. Prevention of cardiac allograft arteriosclerosis by protein tyrosine kinase inhibitor selective for platelet-derived growth factor receptor. Circulation 99, 2295–2301 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Sano, H. et al. Functional blockade of platelet-derived growth factor receptor-beta but not of receptor-alpha prevents vascular smooth muscle cell accumulation in fibrous cap lesions in apolipoprotein E-deficient mice. Circulation 103, 2955–2960 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Kozaki, K. et al. Blockade of platelet-derived growth factor or its receptors transiently delays but does not prevent fibrous cap formation in ApoE null mice. Am. J. Pathol. 161, 1395–1407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jawien, A., Bowen-Pope, D. F., Lindner, V., Schwartz, S. M. & Clowes, A. W. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J. Clin. Invest. 89, 507–511 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nabel, E. G. et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induce intimal hyperplasia in vivo. J. Clin. Invest. 91, 1822–1829 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Newton, C. S. et al. Platelet-derived growth factor receptor-beta (PDGFR-beta) activation promotes its association with the low density lipoprotein receptor-related protein (LRP). Evidence for co-receptor function. J. Biol. Chem. 280, 27872–27878 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Boucher, P. et al. Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae. J. Biol. Chem. 277, 15507–15513 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Boucher, P., Gotthardt, M., Li, W. P., Anderson, R. G. & Herz, J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300, 329–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Boucher, P. et al. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One 2, e448 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Takayama, Y. P., Anderson, R. G. & Herz, J. Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor beta (PDGFR beta). J. Biol. Chem. 280, 18504–18510 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  Google Scholar 

  197. Masri, F. A. et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L548–L554 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Tuder, R. M. & Voelkel, N. F. Plexiform lesion in severe pulmonary hypertension: association with glomeruloid lesion. Am. J. Pathol. 159, 382–383 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yeager, M. E., Halley, G. R., Golpon, H. A., Voelkel, N. F. & Tuder, R. M. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ. Res. 88, E2–E11 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Warburg, O. On Metabolism of Tumors. (Constable, London, 1930).

    Google Scholar 

  201. Xu, W. et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc. Natl Acad. Sci. USA 104, 1342–1347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  Google Scholar 

  204. Belloc, F. et al. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-ABL inhibitors in chronic myelogenous leukemia cells. Leukemia 23, 679–685 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Sleijfer, S., Wiemer, E. & Verweij, J. Drug Insight: gastrointestinal stromal tumors (GIST) — the solid tumor model for cancer-specific treatment. Nature Clin. Pract. Oncol. 5, 102–111 (2008).

    Article  CAS  Google Scholar 

  206. Mendez, M. & LaPointe, M. C. PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation. Am. J. Physiol. Heart Circ. Physiol. 288, H2111–H2117 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Ruwhof, C. & van der Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc. Res. 47, 23–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. Martinelli, G., Soverini, S., Iacobucci, I. & Baccarani, M. Intermittent targeting as a tool to minimize toxicity of tyrosine kinase inhibitor therapy. Nature Clin. Pract. Oncol. 6, 68–69 (2009).

    Article  CAS  Google Scholar 

  209. Heinrich, M. C. et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J. Clin. Oncol. 26, 5360–5367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. O'Farrell, A. M. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101, 3597–3605 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Motzer, R. J. et al. Phase I trial of sunitinib malate plus interferon-alpha for patients with metastatic renal cell carcinoma. Clin. Genitourin. Cancer 7, 28–33 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Faivre, S. et al. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol. 10, 794–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  214. Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Cheng, A. L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Ferry, D. R. et al. A phase II study of gefitinib monotherapy in advanced esophageal adenocarcinoma: evidence of gene expression, cellular, and clinical response. Clin. Cancer Res. 13, 5869–5875 (2007).

    Article  CAS  PubMed  Google Scholar 

  217. Janmaat, M. L. A. et al. Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J. Clin. Oncol. 24, 1612–1619 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Smolich, B. D. et al. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood 97, 1413–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Fury, M. G. et al. A Phase II study of SU5416 in patients with advanced or recurrent head and neck cancers. Invest. New Drugs 25, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Fiedler, W. et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 102, 2763–2767 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Weisberg, E. et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1, 433–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Stone, R. M. et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105, 54–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Chan, E. et al. A phase I trial of CEP-701 and gemcitabine in patients with advanced adenocarcinoma of the pancreas. Invest. New Drugs 26, 241–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  224. Knapper, S. et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108, 3262–3270 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Cheng, Y. & Paz, K. Tandutinib, an oral, small-molecule inhibitor of FLT3 for the treatment of AML and other cancer indications. IDrugs 11, 46–56 (2008).

    CAS  PubMed  Google Scholar 

  226. Kelly, L. M. et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1, 421–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  227. Moreno-Vinasco, L. et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol. Genomics 33, 278–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Gomberg-Maitland, M. et al. A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin. Pharmacol. Ther. 87, 303–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Nagaoka, I., Trapnell, B. C. & Crystal, R. G. Upregulation of platelet-derived growth factor-A and -B gene expression in alveolar macrophages of individuals with idiopathic pulmonary fibrosis. J. Clin. Invest. 85, 2023–2027 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kikuchi, K. et al. Serum concentrations of vascular endothelial growth factor in collagen diseases. Br. J. Dermatol. 139, 1049–1051 (1998).

    Article  CAS  PubMed  Google Scholar 

  231. Krebs, R. et al. Vascular endothelial growth factor plays a major role in development of experimental obliterative bronchiolitis. Transplant Proc. 38, 3266–3267 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Miller, J. W. Vascular endothelial growth factor and ocular neovascularization. Am. J. Pathol. 151, 13–23 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Rosenfeld, P. J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Donahue, S. P., Recchia, F. & Sternberg, P. Jr. Bevacizumab vs ranibizumab for age-related macular degeneration: early results of a prospective double-masked, randomized clinical trial. Am. J. Ophthalmol. 150, 287 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein A. Ghofrani.

Ethics declarations

Competing interests

All authors have received financial support from non-commercial sources — namely, grants from the German Research Foundation, Excellence Cluster Cardiopulmonary Research, and the German Ministry for Education and Research. All authors have financial relationships with commercial sources, including consultancies at Bayer HealthCare, Pfizer and Novartis; board or advisory board membership at Bayer HealthCare, Pfizer, GlaxoSmithKline (GSK) and Novartis; and honoraria from Bayer HealthCare, GSK, Pfizer, and Novartis. All authors have industry-sponsored grants from Bayer HealthCare, Pfizer and Novartis.

Glossary

Fibrosis

The pathological formation of fibrous connective tissue as a repair response (for example, wound healing) or a separate active process that affects the normal architecture of the underlying organ or tissue (for example, lung fibrosis and heart fibrosis).

Right ventricular pressure

The pressure in the ventricular heart chamber on the right side, which also reflects the systolic blood pressure in the pulmonary artery and can be assessed non-invasively by echocardiography or invasively by right heart catheterization.

Cardiotoxicity

The occurrence of disturbances in heart electrophysiology and/or muscle damage resulting in cardiomyocyte dysfunction or death.

Decompensated

Describes the functional deterioration of a previously working structure or system. In the context of heart function, it refers to the progressive decline in the contractility of the myocardium, which can ultimately lead to death from cardiac failure.

Vascular resistance

The force that blood must overcome to maintain perfusion of the blood vessel, calculated as the ratio between pressure and flow.

Vascular remodelling

Structural changes of the vascular wall characterized by intimal, medial and adventitial thickening in response to hypoxia, inflammation, haemodynamic changes or vascular diseases.

Epithelial-to-mesenchymal transition

The trans-differentiation of epithelial cells to mesenchymal cells, characterized by loss of cell adhesion, repression of E cadherin expression and increased cell mobility. It can occur during normal development, as a repair mechanism, or as a mechanism of disease.

Plexiform lesion

A histological hallmark of idiopathic pulmonary arterial hypertension and related conditions. It is a distal pulmonary vascular structure that resembles kidney glomerulae, and its function is not well understood.

Last value carried forward analysis

A method to analyse outcome measures at a given time point even if patients have dropped out of the observation prematurely, whereby the parameter that was last observed is carried forward to the end-point analysis.

paO2

The partial pressure of oxygen in arterial blood. In medicine, it reflects the gas exchange efficiency of the cardiopulmonary system.

Event rate

The number of predefined events occurring in the treatment group (usually in comparison to the corresponding rate in a control group) in clinical trials. The difference in event rate between both groups determines the therapeutic effect and/or the risk to patients.

Cyclosporin A

A calcineurin inhibitor used as a standard immunosuppressive agent for the prevention of graft rejection in transplant medicine.

American College of Rheumatology 70 response

An American College of Rheumatology 70 (ACR 70) response requires a patient to have a 70% reduction in the number of swollen and tender joints, and a reduction of 70% in three of the following five parameters: physician global assessment of disease, patient global assessment of disease, patient assessment of pain, C-reactive protein or erythrocyte sedimentation rate, and degree of disability in health assessment questionnaire score.

Active rheumatoid arthritis

A chronic, systemic inflammatory disorder that primarily affects synovial joints but may induce diffuse inflammation in the lungs, pericardium, pleura and skin.

Right ventricular hypertrophy

The thickening of the right ventricular myocardium in response to increased afterload, mostly due to pulmonary hypertension.

Left ventricular hypertrophy

The thickening of the left ventricular myocardium that occurs either physiologically in response to exercise or as a pathological reaction to increased afterload (for example, in aortic stenosis, aortic insufficiency and systemic hypertension) or hypertrophic cardiomyopathies.

Tunica media

The middle layer of an artery or vein that is made up of smooth muscle cells and elastic tissue. It is localized between the tunica intima and tunica adventitia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimminger, F., Schermuly, R. & Ghofrani, H. Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 9, 956–970 (2010). https://doi.org/10.1038/nrd3297

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3297

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research