Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo

Abstract

Normal cells can permanently lose the ability to proliferate when challenged by potentially oncogenic stress, a process termed cellular senescence. Senescence-associated beta-galactosidase (SA-βgal) activity, detectable at pH 6.0, permits the identification of senescent cells in culture and mammalian tissues. Here we describe first a cytochemical protocol suitable for the histochemical detection of individual senescent cells both in culture and tissue biopsies. The second method is based on the alkalinization of lysosomes, followed by the use of 5-dodecanoylaminofluorescein di-β-D-galactopyranoside (C12FDG), a fluorogenic substrate for βgal activity. The cytochemical method takes about 30 min to execute, and several hours to a day to develop and score. The fluorescence methods take between 4 and 8 h to execute and can be scored in a single day. The cytochemical method is applicable to tissue sections and requires simple reagents and equipment. The fluorescence-based methods have the advantages of being more quantitative and sensitive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Senescence-associated beta-galactosidase (SA-βgal) detection in replicative senescence and stress-induced premature senescence.

Similar content being viewed by others

References

  1. Shay, J.W. & Wright, W.E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Chretien, A. et al. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis. Free Radic. Biol. Med. 44, 1732–1751 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Collado, M., Blasco, M.A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Price, J.S. et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Erusalimsky, J.D. & Kurz, D.J. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp. Gerontol. 40, 634–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Matthews, C. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. 99, 156–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Dimri, G.P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo . Proc. Natl. Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Castro, P., Giri, D., Lamb, D. & Ittmann, M. Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55, 30–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Paradis, V. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol. 32, 327–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. van der Loo, B., Fenton, M.J. & Erusalimsky, J.D. Cytochemical detection of a senescence-associated beta-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp. Cell Res. 241, 309–315 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kurz, D.J., Decary, S., Hong, Y. & Erusalimsky, J.D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113 (Pt 20): 3613–3622 (2000).

    CAS  PubMed  Google Scholar 

  14. Brunk, U., Ericsson, J.L., Ponten, J. & Westermark, B. Residual bodies and 'aging' in cultured human glia cells. Effect of entrance into phase 3 and prolonged periods of confluence. Exp. Cell Res. 79, 1–14 (1973).

    Article  PubMed  Google Scholar 

  15. Cristofalo, V.J. et al. Replicative senescence: a critical review. Mech. Ageing Dev. 125, 827–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Robbins, E., Levine, E.M. & Eagle, H. Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211–1222 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshimori, T. et al. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707–17712 (1991).

    CAS  PubMed  Google Scholar 

  18. Lee, B.Y. et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida, K. et al. Human beta-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases. Am. J. Hum. Genet. 49, 435–442 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki, Y. & Oshima, A. A beta-galactosidase gene mutation identified in both Morquio B disease and infantile GM1 gangliosidosis. Hum. Genet. 91, 407 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Debacq-Chainiaux, F. et al. Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. Free Radic. Biol. Med. 44, 1817–1832 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Debacq-Chainiaux, F. et al. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J. Cell Sci. 118, 743–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Dumont, P. et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic. Biol. Med. 28, 361–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Frippiat, C. et al. Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J. Biol. Chem. 276, 2531–2537 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bertrand-Vallery, V. et al. Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16(INK-4A). Biogerontology epub ahead of print, 10.1007/s10522-009-9238-y (25 June 2009).

  26. Lewis, D.A., Yi, Q., Travers, J.B. & Spandau, D.F. UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol. Biol. Cell 19, 1346–1353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masters, J.R. & Stacey, G.N. Changing medium and passaging cell lines. Nat. Protoc. 2, 2276–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Q. & Ames, B.N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91, 4130–4134 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Dumont, P. et al. Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett. 502, 109–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Toussaint, O. et al. Stress-induced premature senescence or stress-induced senescence-like phenotype: one in vivo reality, two possible definitions? Scientific World Journal 2, 230–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Tsolou, A. et al. ssDNA fragments induce cell senescence by telomere uncapping. Exp. Gerontol. 43, 892–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Coppe, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Rodier, F. et al. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patschan, S. et al. Mapping mechanisms and charting the time course of premature cell senescence and apoptosis: lysosomal dysfunction and ganglioside accumulation in endothelial cells. Am. J. Physiol. Renal Physiol. 294, F100–F109 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O.T. and F.D.-C. are respectively Senior Research Associate and Research Associate of the FNRS, Belgium. We acknowledge the Région Wallonne for the First-DEI 'Cosmet-X' project, the Network II Senegene project and the Pole of Excellence Nanotoxico project. We thank the European Commission for the Integrated Projects Proteomage (LSHM-CT-2005-518230) and GeHA (LSHM-CT-2004-503270); for the Coordination & Support Actions Link-Age and WhyWeAge (LSHM-CT-2005-513866, HEALTH-F4-2008-200970); and the Marie Curie Matiss Project (MTKI-CT-2006–042768). Also supported by grants from the US National Institutes of Health (AG09909, AG017242, CA0126540, AG032117 and AG025708) and the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.D.-C., O.T., J.D.E. and J.C. carried out and analyzed experiments. F.D.-C., O.T., J.D.E. and J.C. wrote the paper.

Corresponding author

Correspondence to Olivier Toussaint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debacq-Chainiaux, F., Erusalimsky, J., Campisi, J. et al. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4, 1798–1806 (2009). https://doi.org/10.1038/nprot.2009.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing