Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensing the outside world: TSLP regulates barrier immunity

Abstract

Thymic stromal lymphopoietin (TSLP) is an interleukin 7 (IL-7)-like cytokine originally characterized by its ability to promote the activation of B cells and dendritic cells (DCs). Subsequent studies have shown that TSLP promotes T helper type 2 (TH2) cell responses associated with immunity to some helminth parasites and the pathogenesis of many inflammatory diseases, including atopic dermatitis and asthma. This review will focus on recent findings indicating that in addition to influencing B cell and DC function, TSLP can promote TH2 cytokine–associated inflammation by directly promoting the effector functions of CD4+ TH2 cells, basophils and other granulocyte populations while simultaneously limiting the expression of DC-derived proinflammatory cytokines and promoting regulatory T cell responses in peripheral tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pantheon of TSLP-responsive cells.
Figure 2: TSLP regulates TH2 cytokine responses after helminth infection and exposure to allergens.

Similar content being viewed by others

References

  1. Friend, S.L. et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328 (1994).

    CAS  Google Scholar 

  2. Sims, J.E. et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J. Exp. Med. 192, 671–680 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  3. Ray, R.J., Furlonger, C., Williams, D.E. & Paige, C.J. Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol. 26, 10–16 (1996).

    Article  CAS  Google Scholar 

  4. Reche, P.A. et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J. Immunol. 167, 336–343 (2001).

    Article  CAS  Google Scholar 

  5. Quentmeier, H. et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15, 1286–1292 (2001).

    Article  CAS  Google Scholar 

  6. Park, L.S. et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–670 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  7. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59–64 (2000).

    Article  CAS  Google Scholar 

  8. Levin, S.D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  Google Scholar 

  9. Isaksen, D.E. et al. Requirement for STAT5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  10. Al Shami, A. et al. A role for thymic stromal lymphopoietin in CD4+ T cell development. J. Exp. Med. 200, 159–168 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  11. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhou, B. et al. Thymic stromal lymphopoietin (TSLP) as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    Article  CAS  Google Scholar 

  13. Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion. Nat. Immunol. 5, 426–434 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  14. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang, Y.H. et al. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24, 827–838 (2006).

    Article  CAS  Google Scholar 

  16. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  17. Rimoldi, M. et al. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106, 2818–2826 (2005).

    Article  CAS  Google Scholar 

  18. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  Google Scholar 

  19. Taylor, B.C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  20. Lambrecht, B.N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  21. Lambrecht, B.N. & Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity 31, 412–424 (2009).

    Article  CAS  Google Scholar 

  22. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  23. Pearce, E.J., Kane, C.M. & Sun, J. Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response. Chem. Immunol. Allergy 90, 82–90 (2006).

    CAS  PubMed  Google Scholar 

  24. Perrigoue, J.G. et al. MHC class II–dependent basophil-CD4+ T cell interactions promote TH2 cytokine–dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  25. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  26. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    Article  CAS  Google Scholar 

  27. Massacand, J.C. et al. Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc. Natl. Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  Google Scholar 

  28. Omori, M. & Ziegler, S. Induction of IL-4 expression in CD4+ T cells by thymic stromal lymphopoietin. J. Immunol. 178, 1396–1404 (2007).

    Article  CAS  Google Scholar 

  29. Allakhverdi, Z., Comeau, M.R., Jessup, H.K. & Delespesse, G. Thymic stromal lymphopoietin as a mediator of crosstalk between bronchial smooth muscles and mast cells. J. Allergy Clin. Immunol. 123, 958–960 (2009).

    Article  CAS  Google Scholar 

  30. Allakhverdi, Z. et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204, 253–258 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  31. Nagata, Y., Kamijuku, H., Taniguchi, M., Ziegler, S. & Seino, K. Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. Int. Arch. Allergy Immunol. 144, 305–314 (2007).

    Article  CAS  Google Scholar 

  32. Wong, C.K., Hu, S., Cheung, P.F. & Lam, C.W. TSLP induces chemotactic and pro-survival effects in eosinophils: implications in allergic inflammation. Am. J. Respir. Cell Mol. Biol. published online, doi:10.1165/rcmb.2009-0168OC (20 October 2009).

  33. Iliev, I.D., Matteoli, G. & Rescigno, M. The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J. Exp. Med. 204, 2253–2257 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  34. Iliev, I.D. et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58, 1481–1489 (2009).

    Article  CAS  Google Scholar 

  35. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  Google Scholar 

  36. Coombes, J.L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  37. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  38. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  39. Iwasaki, A. & Kelsall, B.L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  40. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the corsstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  41. Zeuthen, L.H., Fink, L.N. & Frokiaer, H. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 123, 197–208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramalingam, T.R. et al. Regulation of helminth-induced Th2 responses by thymic stromal lymphopoietin. J. Immunol. 182, 6452–6459 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  43. Ker, J. & Hartert, T.V. The atopic march: what's the evidence? Ann. Allergy Asthma Immunol. 103, 282–289 (2009).

    Article  PubMed Central  Google Scholar 

  44. Hahn, E.L. & Bacharier, L.B. The atopic march: the pattern of allergic disease development in childhood. Immunol. Allergy Clin. North Am. 25, 231–246 (2005).

    Article  Google Scholar 

  45. Spergel, J.M. & Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 112, S118–S127 (2003).

    Article  Google Scholar 

  46. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    Article  CAS  Google Scholar 

  47. Miyata, M. et al. Mast cell regulation of epithelial TSLP expression plays an important role in the development of allergic rhinitis. Eur. J. Immunol. 38, 1487–1492 (2008).

    Article  CAS  Google Scholar 

  48. Mou, Z. et al. Overexpression of thymic stromal lymphopoietin in allergic rhinitis. Acta Otolaryngol. (Stockh.) 8, 1–5 (2008).

    Google Scholar 

  49. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  50. He, H.Q. et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J. Allergy Clin. Immunol. 124, 222–229 (2009).

    Article  CAS  Google Scholar 

  51. Hunninghake, G.M. et al. Sex-stratified linkage analysis identifies a female-specific locus for IgE to cockroach in Costa Ricans. Am. J. Respir. Crit. Care Med. 177, 830–836 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  52. Harada, M. et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 40, 368–374 (2009).

    Article  CAS  Google Scholar 

  53. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  54. Li, M. et al. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc. Natl. Acad. Sci. USA 102, 14795–14800 (2005).

    Article  CAS  Google Scholar 

  55. Demehri, S. et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 6, e123 (2008).

    Article  PubMed Central  Google Scholar 

  56. Judge, M.R., Morgan, G. & Harper, J.I. A clinical and immunological study of Netherton's syndrome. Br. J. Dermatol. 131, 615–621 (1994).

    Article  CAS  Google Scholar 

  57. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25, 141–142 (2000).

    Article  CAS  Google Scholar 

  58. Demehri, S., Morimoto, M., Holtzman, M.J. & Kopan, R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 7, e1000067 (2009).

    Article  PubMed Central  Google Scholar 

  59. Zhang, Z. et al. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc. Natl. Acad. Sci. USA 106, 1536–1541 (2009).

    Article  CAS  Google Scholar 

  60. Headley, M.B. et al. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J. Immunol. 182, 1641–1647 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  61. Ying, S. et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol. 181, 2790–2798 (2008).

    Article  CAS  Google Scholar 

  62. Al Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W.J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  63. Lee, H.C. & Ziegler, S.F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl. Acad. Sci. USA 104, 914–919 (2007).

    Article  CAS  Google Scholar 

  64. Kato, A., Favoreto, S. Jr, Avila, P.C. & Schleimer, R.P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 179, 1080–1087 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  65. Holt, P.G. & Sly, P.D. Interactions between RSV infection, asthma, and atopy: unraveling the complexities. J. Exp. Med. 196, 1271–1275 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  66. Hall, C.B. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 344, 1917–1928 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  67. Martinez, F.D. Respiratory syncytial virus bronchiolotis and the pathogenesis of childhood asthma. Pediatr. Infect. Dis. J. 22, S76–S82 (2003).

    PubMed  Google Scholar 

  68. Stein, R.T. et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet 354, 541–545 (1999).

    Article  CAS  Google Scholar 

  69. Yoon, J.S., Kim, H.H., Lee, Y. & Lee, J.S. Cytokine induction by respiratory syncytial virus and adenovirus in bronchial epethelial cells. Pediatr. Pulmonol. 42, 277–282 (2007).

    Article  Google Scholar 

  70. Leonard, W.J. TSLP: finally in the limelight. Nat. Immunol. 3, 605–607 (2002).

    Article  CAS  Google Scholar 

  71. Kido, M. et al. Helicobacter pylori promotes the production of thymic stromal lymphopoietin by gastric epithelial cells and induces dendritic cell-mediated inflammatory Th2 responses. Infect. Immun. 78, 108–114 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Campbell, M. Siracusa and G. Sonnenberg for reviewing the manuscript. Supported by the National Institutes of Health (AI068731, AI044259, AR055695 and AR56113 to S.F.Z., and AI061570, AI074878 and AI083480 to D.A.), the Burroughs Wellcome Fund (D.A.), the Crohn's and Colitis Foundation of America (D.A.) and the University of Pennsylvania (D.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven F Ziegler or David Artis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, S., Artis, D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11, 289–293 (2010). https://doi.org/10.1038/ni.1852

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing