Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis

Abstract

Mycobacterium tuberculosis and Yersinia pestis, the causative agents of tuberculosis and plague, respectively, are pathogens with serious ongoing impact on global public health1,2 and potential use as agents of bioterrorism3. Both pathogens have iron acquisition systems based on siderophores, secreted iron-chelating compounds with extremely high Fe3+ affinity4,5. Several lines of evidence suggest that siderophores have a critical role in bacterial iron acquisition inside the human host6,7,8,9, where the free iron concentration is well below that required for bacterial growth and virulence10. Thus, siderophore biosynthesis is an attractive target in the development of new antibiotics to treat tuberculosis and plague2,5,8,11. In particular, such drugs, alone or as part of combination therapies, could provide a valuable new line of defense against intractable multiple-drug-resistant infections. Here, we report the design, synthesis and biological evaluation of a mechanism-based inhibitor of domain salicylation enzymes required for siderophore biosynthesis in M. tuberculosis and Y. pestis. This new antibiotic inhibits siderophore biosynthesis and growth of M. tuberculosis and Y. pestis under iron-limiting conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of salicyl-capped siderophores, aroyl-adenylate biosynthesis intermediates, and intermediate mimics.
Figure 2: Inhibition of MbtA, YbtE and PchD by salicyl-AMS.
Figure 3: Inhibition of siderophore production and bacterial growth by salicyl-AMS.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Cole, S.T., Eisenach, K.D., McMurray, D.N. & Jacobs, W.R.J. (eds) Tuberculosis and the Tubercle Bacillus (ASM Press, Washington, DC, 2005).

    Book  Google Scholar 

  2. Perry, R.D. & Fetherston, J.D. Yersinia pestis—etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997).

    Article  CAS  Google Scholar 

  3. Centers for Disease Control and Prevention. Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC strategic planning workgroup. MMWR Recomm. Rep. 49, 1–14 (2000).

  4. Perry, R.D., Balbo, P.B., Jones, H.A., Fetherston, J.D. & DeMoll, E. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145, 1181–1190 (1999).

    Article  CAS  Google Scholar 

  5. Quadri, L.E.N. & Ratledge, C. Iron metabolism in the tubercle bacillus and other mycobacteria. in Tuberculosis and the Tubercle Bacillus (eds Cole, S.T., Eisenach, K.D., McMurray, D.N. & Jacobs, W.R.J.) 341–357 (ASM Press, Washington, DC, 2004).

    Google Scholar 

  6. Bearden, S.W., Fetherston, J.D. & Perry, R.D. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65, 1659–1668 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gobin, J. & Horwitz, M.A. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J. Exp. Med. 183, 1527–1532 (1996).

    Article  CAS  Google Scholar 

  8. De Voss, J.J. et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA 97, 1252–1257 (2000).

    Article  CAS  Google Scholar 

  9. Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16, 463–496 (2003).

    Article  CAS  Google Scholar 

  10. Jurado, R.L. Iron, infections, and anemia of inflammation. Clin. Infect. Dis. 25, 888–895 (1997).

    Article  CAS  Google Scholar 

  11. NIH-NIAID. The counter-bioterrorism research agenda of the National Institute of Allergy and Infections Diseases (NIAID) for CDC category A agents (National Institutes of Health, Bethesda, Maryland, USA, 2002).

  12. Quadri, L.E.N. Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol. Microbiol. 37, 1–12 (2000).

    Article  CAS  Google Scholar 

  13. Crosa, J.H. & Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    Article  CAS  Google Scholar 

  14. Quadri, L.E.N., Sello, J., Keating, T.A., Weinreb, P.H. & Walsh, C.T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

    Article  CAS  Google Scholar 

  15. Gehring, A.M., Mori, I.I., Perry, R.D. & Walsh, C.T. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650 (1998).

    Article  CAS  Google Scholar 

  16. Kim, S., Lee, S.W., Choi, E.C. & Choi, S.Y. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl. Microbiol. Biotechnol. 61, 278–288 (2003).

    Article  CAS  Google Scholar 

  17. Finking, R. et al. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. ChemBioChem 4, 903–906 (2003).

    Article  CAS  Google Scholar 

  18. Florini, J.R., Bird, H.H. & Bell, P.H. Inhibition of protein synthesis in vitro and in vivo by nucleocidin, an antitrypanosomal antibiotic. J. Biol. Chem. 241, 1091–1098 (1966).

    CAS  PubMed  Google Scholar 

  19. Quadri, L.E.N., Keating, T.A., Patel, H.M. & Walsh, C.T. Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry 38, 14941–14954 (1999).

    Article  CAS  Google Scholar 

  20. May, J.J., Kessler, N., Marahiel, M.A. & Stubbs, M.T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl Acad. Sci. USA 99, 12120–12125 (2002).

    Article  CAS  Google Scholar 

  21. Copeland, R.A. Tight binding inhibitors. in Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis 305–317 (Wiley-VCH, New York, 2000).

    Chapter  Google Scholar 

  22. Zhu, X.-F., Williams, H.J. & Scott, A.I. Facile and highly selective 5′-desilylation of multi-silylated nucleosides. J. Chem. Soc. Perkin Trans. I 2305–2306 (2000).

  23. Castro-Pichel, J., Garcia-Lopez, M.T. & De las Heras, F.G. A facile synthesis of ascamycin and related analogs. Tetrahedron 43, 383–389 (1987).

    Article  CAS  Google Scholar 

  24. Forrest, A.K. et al. Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Bioorg. Med. Chem. Lett. 10, 1871–1874 (2000).

    Article  CAS  Google Scholar 

  25. Darwin, K.H., Ehrt, S., Gutierrez-Ramos, J.C., Weich, N. & Nathan, C.F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).

    Article  CAS  Google Scholar 

  26. Barclay, R. & Ratledge, C. Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum and other related species. J. Gen. Microbiol. 134, 771–776 (1988).

    CAS  PubMed  Google Scholar 

  27. Gong, S., Bearden, S.W., Geoffroy, V.A., Fetherston, J.D. & Perry, R.D. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect. Immun. 69, 2829–2837 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to Professor Christopher T. Walsh on the occasion of his 60th birthday. We thank R. Perry (University of Kentucky) for critical advice on Y. pestis experiments and G. Sukenick, A. Dudkina, H. Fang and S. Rusli (MSKCC Analytical Core Facility) and C. Soll (Hunter College/City University of New York MS Facility) for mass spectral analyses. D.S.T. acknowledges financial support from the William Randolph Hearst Fund in Experimental Therapeutics, William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of MSKCC. L.E.N.Q, a Scholar of the Stavros S. Niarchos Foundation, acknowledges the financial support of the Potts Memorial Foundation, the Cystic Fibrosis Association and the William Randolph Hearst Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Derek S Tan or Luis E N Quadri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Structural analysis of aroyl adenylate binding to adenylate-forming enzymes. (PDF 5349 kb)

Supplementary Fig. 2

Synthesis of salicyl-AMS. (PDF 621 kb)

Supplementary Methods (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreras, J., Ryu, JS., Di Lello, F. et al. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1, 29–32 (2005). https://doi.org/10.1038/nchembio706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing