Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing

An Erratum to this article was published on 01 December 2010

This article has been updated

Abstract

Cellular senescence is a recognized mechanism of tumour suppression; however, its contribution to other pathologies is not well understood. We show that the matricellular protein CCN1 (also known as CYR61; cysteine-rich protein 61), which is dynamically expressed at sites of wound repair, can induce fibroblast senescence by binding to integrin α6β1 and the heparan sulphate proteoglycans (receptors involved in cell adhesion). CCN1 induces DNA damage response pathways and activates p53 and the RAC1–NOX1 complex, which generates reactive oxygen species (ROS). This results in the ROS-dependent activation of the p16INK4a/pRb pathway, leading to senescence and concomitant expression of antifibrotic genes. Senescent fibroblasts accumulate in granulation tissues of healing cutaneous wounds and express antifibrotic genes in wild-type mice. These processes are lost in knockin mice that express a senescence-defective Ccn1 mutant, resulting in exacerbated fibrosis. Topical application of CCN1 protein to wounds reverses these defects. Thus, fibroblast senescence is a CCN1-dependent wound healing response in cutaneous injury that functions to curb fibrosis during tissue repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired accumulation of senescent cells in Ccn1dm/dm mice during cutaneous wound healing.
Figure 2: CCN1 induces senescence in normal human fibroblasts.
Figure 3: CCN1 induces senescence through α6β1 integrin–HSPG complexes.
Figure 4: Both p53 and p16INK4a participate in CCN1-induced senescence.
Figure 5: Sustained ROS accumulation induced through CCN1–α6β1 integrin interaction is required for senescence.
Figure 6: The NOX1–RAC1 complex mediates CCN1-induced senescence.
Figure 7: Induction of p16INK4a through ROS-dependent activation of stress kinases.
Figure 8: Enhanced fibrogenic response during wound healing in Ccn1dm/dm mice.

Similar content being viewed by others

Change history

  • 12 November 2010

    In the version of this article initially published online and in print, the labels BSA and CCN1 in Fig. 2a were swapped. Theis error has been corrected in both the HTML and PDF versions of the article.

References

  1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  Google Scholar 

  2. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  3. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  Google Scholar 

  4. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  Google Scholar 

  5. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  6. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  7. Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    Article  CAS  Google Scholar 

  8. Young, A. R. & Narita, M. SASP reflects senescence. EMBO Rep. 10, 228–230 (2009).

    Article  CAS  Google Scholar 

  9. Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article  CAS  Google Scholar 

  10. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  Google Scholar 

  11. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  Google Scholar 

  12. Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M. & Green, M. R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363–374 (2008).

    Article  CAS  Google Scholar 

  13. Augert, A. et al. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep. 10, 271–277 (2009).

    Article  CAS  Google Scholar 

  14. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS. Biol. 6, 2853–2868 (2008).

    Article  CAS  Google Scholar 

  15. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  Google Scholar 

  16. Adams, P. D. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell 36, 2–14 (2009).

    Article  CAS  Google Scholar 

  17. Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009).

    Article  CAS  Google Scholar 

  18. Chen, C.-C. & Lau, L. F. Functions and mechanisms of action of CCN matricellular proteins. Int. J. Biochem. Cell Biol. 41, 771–783 (2009).

    Article  CAS  Google Scholar 

  19. Babic, A. M., Kireeva, M. L., Kolesnikova, T. V. & Lau, L. F. CYR61, product of a growth factor-inducible immediate-early gene, promotes angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA. 95, 6355–6360 (1998).

    Article  CAS  Google Scholar 

  20. Mo, F. E. et al. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol. Cell Biol. 22, 8709–8720 (2002).

    Article  CAS  Google Scholar 

  21. Mo, F.-E. & Lau, L. F. The matricellular protein CCN1 is essential for cardiac development. Circ. Res. 99, 961–969 (2006).

    Article  CAS  Google Scholar 

  22. Chen, C.-C., Mo, F.-E. & Lau, L. F. The angiogenic inducer Cyr61 induces a genetic program for wound healing in human skin fibroblasts. J. Biol. Chem. 276, 47329–47337 (2001).

    Article  CAS  Google Scholar 

  23. Stramer, B. M., Mori, R. & Martin, P. The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J. Invest. Dermatol. 127, 1009–1017 (2007).

    Article  CAS  Google Scholar 

  24. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  Google Scholar 

  25. Chen, N., Chen, C. C. & Lau, L. F. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin α6β1 and cell surface heparan sulphate proteoglycans. J. Biol. Chem. 275, 24953–24961 (2000).

    Article  CAS  Google Scholar 

  26. Leu, S.-J. et al. Targeted mutagenesis of the matricellular protein CCN1 (CYR61): selective inactivation of integrin α6β1-heparan sulphate proteoglycan coreceptor-mediated cellular activities. J. Biol. Chem. 279, 44177–44187 (2004).

    Article  CAS  Google Scholar 

  27. Todorovic, V., Chen, C.-C., Hay, N. & Lau, L. F. The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J. Cell Biol. 171, 559–568 (2005).

    Article  CAS  Google Scholar 

  28. Chen, C.-C. et al. Cytotoxicity of TNFα is regulated by integrin-mediated matrix signaling. EMBO J. 26, 1257–1267 (2007).

    Article  CAS  Google Scholar 

  29. Juric, V., Chen, C. C. & Lau, L. F. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell Biol. 29, 3266–3279 (2009).

    Article  CAS  Google Scholar 

  30. Chen, N., Leu, S.-J., Todorovic, V., Lam, S. C. T. & Lau, L. F. Identification of a novel integrin αvβ3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J. Biol. Chem. 279, 44166–44176 (2004).

    Article  CAS  Google Scholar 

  31. Mendez, M. V. et al. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J. Vasc. Surg. 28, 876–883 (1998).

    Article  CAS  Google Scholar 

  32. Stanley, A. & Osler, T. Senescence and the healing rates of venous ulcers. J. Vasc. Surg. 33, 1206–1211 (2001).

    Article  CAS  Google Scholar 

  33. Leu, S.-J. et al. Identification of a novel integrin α6β1 binding site in the angiogenic Inducer CCN1 (CYR61). J. Biol. Chem. 278, 33801–33808 (2003).

    Article  CAS  Google Scholar 

  34. Caspari, T. How to activate p53. Curr. Biol. 10, R315–R317 (2000).

    Article  CAS  Google Scholar 

  35. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004).

    Article  CAS  Google Scholar 

  36. Catalano, A., Rodilossi, S., Caprari, P., Coppola, V. & Procopio, A. 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J. 24, 170–179 (2005).

    Article  CAS  Google Scholar 

  37. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van, L. M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  Google Scholar 

  38. Lu, T. & Finkel, T. Free radicals and senescence. Exp. Cell Res. 314, 1918–1922 (2008).

    Article  CAS  Google Scholar 

  39. Chiarugi, P. Reactive oxygen species as mediators of cell adhesion. Ital. J. Biochem. 52, 28–32 (2003).

    CAS  PubMed  Google Scholar 

  40. Lambeth, J. D., Kawahara, T. & Diebold, B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319–331 (2007).

    Article  CAS  Google Scholar 

  41. Chen, C.-C., Chen, N. & Lau, L. F. The angiogenic factors Cyr61 and CTGF induce adhesive signaling in primary human skin fibroblasts. J. Biol. Chem. 276, 10443–10452 (2001).

    Article  CAS  Google Scholar 

  42. Iwasa, H., Han, J. & Ishikawa, F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8, 131–144 (2003).

    Article  CAS  Google Scholar 

  43. Wen-Sheng, W. ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin a. Oncogene 22, 955–963 (2003).

    Article  Google Scholar 

  44. Tobiume, K. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222–228 (2001).

    Article  CAS  Google Scholar 

  45. Traore, K. et al. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: role in signaling TPA-induced growth arrest in ML-1 cells. J. Cell. Physiol. 216, 276–285 (2008).

    Article  CAS  Google Scholar 

  46. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  Google Scholar 

  47. O'Brien, T. P., Yang, G. P., Sanders, L. & Lau, L. F. Expression of cyr61, a growth factor-inducible immediate-early gene. Mol. Cell Biol. 10, 3569–3577 (1990).

    Article  CAS  Google Scholar 

  48. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  49. Hanna, M. et al. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J. Biol. Chem. 284, 23125–23136 (2009).

    Article  CAS  Google Scholar 

  50. Sisco, M. et al. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen. 16, 661–673 (2008).

    Article  Google Scholar 

  51. Shi-wen, X., Leask, A. & Abraham, D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 19, 133–144 (2008).

    Article  Google Scholar 

  52. Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox. Signal. 11, 1289–1299 (2009).

    Article  CAS  Google Scholar 

  53. Castro, P., Giri, D., Lamb, D. & Ittmann, M. Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55, 30–38 (2003).

    Article  CAS  Google Scholar 

  54. Sakamoto, S. et al. Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 145, 2929–2940 (2004).

    Article  CAS  Google Scholar 

  55. Quan, T. et al. Elevated cysteine-rich 61 mediates aberrant collagen homeostasis in chronologically aged and photoaged human skin. Am. J. Pathol. 169, 482–490 (2006).

    Article  CAS  Google Scholar 

  56. Littlewood, T. D. & Bennett, M. R. Foxing smooth muscle cells: FOXO3a–CYR61 connection. Circ. Res. 100, 302–304 (2007).

    Article  CAS  Google Scholar 

  57. Franzen, C. A. et al. The Matrix Protein CCN1 is Critical for Prostate Carcinoma Cell Proliferation and TRAIL-Induced Apoptosis. Mol. Cancer Res. 7, 1045–1055 (2009).

    Article  CAS  Google Scholar 

  58. Chien, W. et al. Cyr61 suppresses growth of human endometrial cancer cells. J. Biol. Chem. 279, 53087–53096 (2004).

    Article  CAS  Google Scholar 

  59. Wang, B., Ren, J., Ooi, L. L., Chong, S. S. & Lee, C. G. Dinucleotide repeats negatively modulate the promoter activity of Cyr61 and is unstable in hepatocellular carcinoma patients. Oncogene 24, 3999–4008 (2005).

    Article  CAS  Google Scholar 

  60. Mori, A. et al. CYR61: a new measure of lung cancer outcome. Cancer Invest. 25, 738–741 (2007).

    Article  CAS  Google Scholar 

  61. Dobroff, A. S. et al. Silencing cAMP-response element binding protein (CREB) identifies cysteine-rich protein 61 (CYR61) as a tumor suppressor gene in melanoma. J. Biol. Chem. 284, 26194–26206 (2009).

    Article  CAS  Google Scholar 

  62. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-β-gal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    Article  CAS  Google Scholar 

  63. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  64. Schomber, T., Kalberer, C. P., Wodnar-Filipowicz, A. & Skoda, R. C. Gene silencing by lentivirus-mediated delivery of siRNA in human CD34+ cells. Blood 103, 4511–4513 (2004).

    Article  CAS  Google Scholar 

  65. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).

    Article  CAS  Google Scholar 

  66. Narita, M. et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126, 503–514 (2006).

    Article  CAS  Google Scholar 

  67. Luo, J. D., Wang, Y. Y., Fu, W. L., Wu, J. & Chen, A. F. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 110, 2484–2493 (2004).

    Article  CAS  Google Scholar 

  68. Wilson, L., Fathke, C. & Isik, F. Tissue dispersion and flow cytometry for the cellular analysis of wound healing. Biotechniques 32, 548–551 (2002).

    Article  CAS  Google Scholar 

  69. Edwards, C. A. & O'Brien, J. Modified assay for determination of hydroxyproline in tissue hydrolyzate. Clinica Chimica Acta 104, 161–167 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. DiPietro for advice, J. Campisi and S. Lowe for reagents, S. W. Shin for assistance, and members of the laboratory for discussion. This work was supported by grants from the National Institutes of Health to L.F.L.

Author information

Authors and Affiliations

Authors

Contributions

J.-I.J. conducted the experiments and J.-I.J. and L.F.L. designed the experimental plan, analysed the data and wrote the paper.

Corresponding author

Correspondence to Lester F. Lau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, JI., Lau, L. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12, 676–685 (2010). https://doi.org/10.1038/ncb2070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing