Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Mast cells in autoimmune disease

Abstract

Mast cells are known to be the primary responders in allergic reactions, orchestrating strong responses to minute amounts of allergens. Several recent observations indicate that they may also have a key role in coordinating the early phases of autoimmune diseases, particularly those involving auto-antibodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mast cell as an integrator or amplifier of autoimmune responses.

Similar content being viewed by others

References

  1. Galli, S. J., Maurer, M. & Lantz, C. S. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol. 11, 53–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Mekori, Y. A. & Metcalfe, D. D. Mast cells in innate immunity. Immunol. Rev. 173, 131–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Galli, S. J., Zsebo, K. M. & Geissler, E. N. The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96 (1994).

    CAS  PubMed  Google Scholar 

  4. Young, J. D., Liu, C. C., Butler, G., Cohn, Z. A. & Galli, S. J. Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc. Natl Acad. Sci. USA 84, 9175–9179 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams, C. M. & Galli, S. J. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105, 847–859 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, H. & Kinet, J. P. Signalling through the high-affinity IgE receptor FcɛRI. Nature 402, B24–B30 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Daeron, M., Malbec, O., Latour, S., Arock, M. & Fridman, W. H. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Invest. 95, 577–585 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sylvestre, D. L. & Ravetech, J. V. A dominant role for mast cell Fc receptors in the arthus reaction. Immunity 5, 387–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Okayama, Y., Hagaman, D. D. & Metcalfe, D. D. A comparison of mediators released or generated by IFN-γ-treated human mast cells following aggregation of Fc gamma RI or Fc epsilon RI. J. Immunol. 166, 4705–4712 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Austen, K. F. & Becker, E. L. Mechanisms of immunologic injury of rat peritoneal mast cells. II. Complement requirement and phosphonate ester inhibition of release of histamine by rabbit anti-rat γ-globulin. J. Exp. Med. 124, 397–416 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prodeus, A. P., Zhou, X., Maurer, M., Galli, S. J. & Carroll, M. C. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390, 172–175 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Supajatura, V. et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 167, 2250–2256 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Applequist, S. E., Wallin, R. P. & Ljunggren, H. G. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 14, 1065–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Schmitt, E., Huls, C., Nagel, B. & Rude, E. Characterization of a T-cell-derived mast cell costimulatory activity (MCA) that acts synergistically with interleukin 3 and interleukin 4 on the growth of murine mast cells. Cytokine 2, 407–415 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Mekori, Y. A. & Metcalfe, D. D. Mast cell-T cell interactions. J. Allergy Clin. Immunol. 104, 517–523 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Steinman, L. Multiple sclerosis: a two-stage disease. Nature Immunol. 2, 762–764 (2001).

    Article  CAS  Google Scholar 

  17. Brown, M., Tanzola, M. & Robbie-Ryan, M. Mechanisms underlying mast cell influence on EAE disease course. Mol. Immunol. 38, 1373 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Brenner, T., Soffer, D., Shalit, M. & Levi-Schaffer, F. Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122, 210–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Rozniecki, J. J., Hauser, S. L., Stein, M., Lincoln, R. & Theoharides, T. C. Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol. 37, 63–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Brosnan, C. F. & Tansey, F. A. Delayed onset of experimental allergic neuritis in rats treated with reserpine. J. Neuropathol. Exp. Neurol. 43, 84–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Dietsch, G. N. & Hinrichs, D. J. The role of mast cells in the elicitation of experimental allergic encephalomyelitis. J. Immunol. 142, 1476–1481 (1989).

    CAS  PubMed  Google Scholar 

  22. Seeldrayers, P. A., Yasui, D., Weiner, H. L. & Johnson, D. Treatment of experimental allergic neuritis with nedocromil sodium. J. Neuroimmunol. 25, 221–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Secor, V. H., Secor, W. E., Gutekunst, C. A. & Brown, M. A. Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 191, 813–822 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lafaille, J. J. et al. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoreactivity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto, I., Staub, A., Benoist, C. & Mathis, D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286, 1732–1735 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ji, H. et al. Critical roles for interleukin-1 and tumor necrosis factor-α in antibody-induced arthritis. J. Exp. Med. 196, 77–85 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Malfait, A. M. et al. The beta2-adrenergic agonist salbutamol is a potent suppressor of established collagen-induced arthritis: mechanisms of action. J. Immunol. 162, 6278–6283 (1999).

    CAS  PubMed  Google Scholar 

  34. van den Broek, M. F., van den Berg,W. B. & Van de Putte, L. B. The role of mast cells in antigen induced arthritis in mice. J. Rheumatol. 15, 544–551 (1988).

    CAS  PubMed  Google Scholar 

  35. Woolley, D. E. & Tetlow, L. C. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res. 2, 65–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Crisp, A. J., Chapman, C. M., Kirkham, S. E., Schiller, A. L. & Krane, S. M. Articular mastocytosis in rheumatoid arthritis. Arthritis Rheum. 27, 845–851 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Olsson, N., Ulfgren, A. K. & Nilsson, G. Demonstration of mast cell chemotactic activity in synovial fluid from rheumatoid patients. Ann. Rheum. Dis. 60, 187–193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamada, T. et al. Localization of vascular endothelial growth factor in synovial membrane mast cells: examination with “multi-labelling subtraction immunostaining”. Virchows Arch. 433, 567–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Stanley, J. R. in Fitzpatrick's Dermatology in General Medicine (eds Freedberg, I. M. et al.) 666–671 (McGraw-Hill, New York, 1999).

    Google Scholar 

  40. Liu, Z. et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J. Clin. Invest. 92, 2480–2488 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Z. et al. The role of complement in experimental bullous pemphigoid. J. Clin. Invest. 95, 1539–1544 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Z. et al. A major role for neutrophils in experimental bullous pemphigoid. J. Clin. Invest. 100, 1256–1263 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wintroub, B. U., Mihm, M. C., Jr, Goetzl, E. J., Soter, N. A. & Austen, K. F. Morphologic and functional evidence for release of mast-cell products in bullous pemphigoid. N. Engl. J. Med. 298, 417–421 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Baba, T. et al. An eosinophil chemotactic factor present in blister fluids of bullous pemphigoid patients. J. Immunol. 116, 112–116 (1976).

    CAS  PubMed  Google Scholar 

  46. Katayama, I., Doi, T. & Nishioka, K. High histamine level in the blister fluid of bullous pemphigoid. Arch. Dermatol. Res. 276, 126–127 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Konttinen, Y. T. et al. Mast cell derangement in salivary glands in patients with Sjogren's syndrome. Rheumatol. Int. 19, 141–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Napoli, D. C. & Freeman, T. M. Autoimmunity in chronic urticaria and urticarial vasculitis. Curr Allergy Asthma Rep. 1, 329–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ludgate, M. & Baker, G. Unlocking the immunological mechanisms of orbital inflammation in thyroid eye disease. Clin. Exp. Immunol. 127, 193–198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kiely, P. D., Pecht, I. & Oliveira, D. B. Mercuric chloride-induced vasculitis in the Brown Norway rat: αβ T cell-dependent and -independent phases: role of the mast cell. J. Immunol. 159, 5100–5106 (1997).

    CAS  PubMed  Google Scholar 

  51. Zhang, Y., Ramos, B. F. & Jakschik, B. A. Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 258, 1957–1959 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunol. 2, 216–222 (2001).

    Article  CAS  Google Scholar 

  54. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nature Med. 6, 1176–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Benoist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoist, C., Mathis, D. Mast cells in autoimmune disease. Nature 420, 875–878 (2002). https://doi.org/10.1038/nature01324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01324

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing