Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO

Abstract

Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-κB activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-γ, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-γ/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bonifazi P, D'Angelo C, Zagarella S, Zelante T, Bozza S, de Luca A et al. Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 2010; 3: 193–205.

    Article  CAS  Google Scholar 

  2. Bozza S, Perruccio K, Montagnoli C, Gaziano R, Bellocchio S, Burchielli E et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102: 3807–3814.

    Article  CAS  Google Scholar 

  3. Romani L . Dendritic cells in Aspergillus infection and allergy. In: Latgè JP, Steinbach WJ (eds). Aspergillus and Aspergillosis. Washington, DC: ASM Press, 2008: 247–261.

    Google Scholar 

  4. Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172: 3059–3069.

    Article  CAS  Google Scholar 

  5. Mezger M, Kneitz S, Wozniok I, Kurzai O, Einsele H, Loeffler J . Proinflammatory response of immature human dendritic cells is mediated by dectin-1 after exposure to Aspergillus fumigatus germ tubes. J Infect Dis 2008; 197: 924–931.

    Article  CAS  Google Scholar 

  6. Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 2006; 108: 2265–2274.

    Article  CAS  Google Scholar 

  7. Geurtsvan Kessel CH, Lambrecht BN . Division of labor between dendritic cell subsets of the lung. Mucosal Immunol 2008; 1: 442–450.

    Article  CAS  Google Scholar 

  8. Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 2007; 13: 579–586.

    Article  CAS  Google Scholar 

  9. Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio S, Zelante T et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 2006; 176: 1712–1723.

    Article  CAS  Google Scholar 

  10. Romani L, Fallarino F, de Luca A, Montagnoli C, D'Angelo C, Zelante T et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008; 451: 211–215.

    Article  CAS  Google Scholar 

  11. Romani L, Zelante T, de Luca A, Fallarino F, Puccetti P . IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J Immunol 2008; 180: 5157–5162.

    Article  CAS  Google Scholar 

  12. Zelante T, de Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37: 2695–2706.

    Article  CAS  Google Scholar 

  13. Gribar SC, Richardson WM, Sodhi CP, Hackam DJ . No longer an innocent bystander: epithelial Toll-like receptor signaling in the development of mucosal inflammation. Mol Med 2008; 14: 645–659.

    Article  CAS  Google Scholar 

  14. Mayer AK, Bartz H, Fey F, Schmidt LM, Dalpke AH . Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment. Eur J Immunol 2008; 38: 1689–1699.

    Article  CAS  Google Scholar 

  15. Desvignes L, Ernst JD . Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 2009; 31: 974–985.

    Article  CAS  Google Scholar 

  16. Wasylnka JA, Hissen AH, Wan AN, Moore MM . Intracellular and extracellular growth of Aspergillus fumigatus. Med Mycol 2005; 43( Suppl 1) S27–S30.

    Article  CAS  Google Scholar 

  17. Wasylnka JA, Moore MM . Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 2003; 116: 1579–1587.

    Article  CAS  Google Scholar 

  18. Balloy V, Sallenave JM, Wu Y, Touqui L, Latge JP, Si-Tahar M et al. Aspergillus fumigatus-induced interleukin-8 synthesis by respiratory epithelial cells is controlled by the phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2 pathways and not by the Toll-like receptor-MyD88 pathway. J Biol Chem 2008; 283: 30513–30521.

    Article  CAS  Google Scholar 

  19. Paveglio SA, Allard J, Foster Hodgkins SR, Ather J, Bevelander M, Mayette Campbell J et al. Airway epithelial indoleamine 2,3-dioxygenase inhibits CD4+ T cells during Aspergillus fumigatus antigen exposure. Am J Respir Cell Mol Biol 2010; in press.

  20. D'Angelo C, de Luca A, Zelante T, Bonifazi P, Moretti S, Giovannini G et al. Exogenous pentraxin 3 restores antifungal resistance and restrains inflammation in murine chronic granulomatous disease. J Immunol 2009; 183: 4609–4618.

    Article  CAS  Google Scholar 

  21. de Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S et al. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 2007; 179: 5999–6008.

    Article  CAS  Google Scholar 

  22. Bretz C, Gersuk G, Knoblaugh S, Chaudhary N, Randolph-Habecker J, Hackman RC et al. MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun 2008; 76: 952–958.

    Article  CAS  Google Scholar 

  23. Rivera A, Ro G, van Epps HL, Simpson T, Leiner I, Sant'Angelo DB et al. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity 2006; 25: 665–675.

    Article  CAS  Google Scholar 

  24. Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C et al. TLRs govern neutrophil activity in aspergillosis. J Immunol 2004; 173: 7406–7415.

    Article  CAS  Google Scholar 

  25. Jiang Z, Mak TW, Sen G, Li X . Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci USA 2004; 101: 3533–3538.

    Article  CAS  Google Scholar 

  26. Guo B, Chang EY, Cheng G . The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 2008; 118: 1680–1690.

    Article  CAS  Google Scholar 

  27. Meissner N, Swain S, McInnerney K, Han S, Harmsen AG . Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during pneumocystis (PC) clearance in CD4 T cell-competent mice. Am J Pathol 2010; 176: 2806–2818.

    Article  CAS  Google Scholar 

  28. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 2009; 459: 433–436.

    Article  CAS  Google Scholar 

  29. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 2008; 105: 9035–9040.

    Article  CAS  Google Scholar 

  30. van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW et al. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci USA 2010; 107: 3030–3033.

    Article  CAS  Google Scholar 

  31. Poeck H, Ruland J . SYK kinase signaling and the NLRP3 inflammasome in antifungal immunity. J Mol Med 2010; 88: 745–752.

    Article  CAS  Google Scholar 

  32. de Luca A, Zelante T, D'Angelo C, Zagarella S, Fallarino F, Spreca A et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 2010; 3: 361–373.

    Article  CAS  Google Scholar 

  33. Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM . The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 2009; 113: 2394–2401.

    Article  CAS  Google Scholar 

  34. Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR . The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 2008; 181: 5396–5404.

    Article  CAS  Google Scholar 

  35. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Mellor AL, Munn DH, Blazar BR . Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood 2009; 114: 5062–5070.

    Article  Google Scholar 

  36. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL, Munn DH et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 2008; 111: 3257–3265.

    Article  CAS  Google Scholar 

  37. Liu H, Liu L, Fletcher BS, Visner GA . Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am J Respir Crit Care Med 2006; 173: 566–572.

    Article  CAS  Google Scholar 

  38. Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP . Activation of airway epithelial cells by Toll-like receptor agonists. Am J Respir Cell Mol Biol 2004; 31: 358–364.

    Article  Google Scholar 

  39. Heller NM, Matsukura S, Georas SN, Boothby MR, Rothman PB, Stellato C et al. Interferon-gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells. Am J Respir Cell Mol Biol 2004; 31: 573–582.

    Article  CAS  Google Scholar 

  40. Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC . Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol 2007; 120: 1279–1284.

    Article  CAS  Google Scholar 

  41. Wesch D, Beetz S, Oberg HH, Marget M, Krengel K, Kabelitz D . Direct costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta T lymphocytes. J Immunol 2006; 176: 1348–1354.

    Article  CAS  Google Scholar 

  42. Suh HS, Zhao ML, Rivieccio M, Choi S, Connolly E, Zhao Y et al. Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J Virol 2007; 81: 9838–9850.

    Article  CAS  Google Scholar 

  43. Alekseeva L, Huet D, Femenia F, Mouyna I, Abdelouahab M, Cagna A et al. Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 2009; 9: 33.

    Article  Google Scholar 

  44. Evans SE, Scott BL, Clement CG, Larson DT, Kontoyiannis D, Lewis RE et al. Stimulated innate resistance of lung epithelium protects mice broadly against bacteria and fungi. Am J Respir Cell Mol Biol 2010; 42: 40–50.

    Article  CAS  Google Scholar 

  45. de Smet K, Contreras R . Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005; 27: 1337–1347.

    Article  CAS  Google Scholar 

  46. Onishi RM, Gaffen SL . Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129: 311–321.

    Article  CAS  Google Scholar 

  47. Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 2008; 359: 1766–1777.

    Article  CAS  Google Scholar 

  48. Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol 2009; 37: 1022–1029.

    Article  CAS  Google Scholar 

  49. Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F . Polymorphisms in Toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 2008; 197: 618–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cristina Massi Benedetti for digital art and editing. This work was supported by the Specific Targeted Research Project ‘Sybaris’ (LSHE-CT-2006), contract number 037899 (FP7) and by the Italian Projects PRIN 2007KLCKP8_004 (to LR) and 2007XYB9T9_001 (to SB). CC and AC were financially supported by fellowships from Fundação para a Ciência e Tecnologia, Portugal (contracts SFRH/BD/65962/2009 and SFRH/BPD/46292/2008, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigina Romani.

Additional information

Note: Supplementary information is available on the Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Luca, A., Bozza, S., Zelante, T. et al. Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 7, 459–470 (2010). https://doi.org/10.1038/cmi.2010.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.43

Keywords

This article is cited by

Search

Quick links