Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A CD14-independent LPS receptor cluster

A Correction to this article was published on 01 July 2001

Abstract

Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent initiator of an inflammatory response and serves as an indicator of bacterial infection. Although CD14 has been identified as the main LPS receptor, accumulating evidence has suggested the possible existence of other functional receptor(s). In this study, using affinity chromatography, peptide mass fingerprinting and fluorescence resonance energy transfer, we have identified four new proteins that form an activation cluster after LPS ligation and are involved in LPS signal transduction. Here we present evidence that implicates heat shock proteins 70 and 90, chemokine receptor 4 and growth differentiation factor 5 as the main mediators of activation by bacterial lipopolysaccharide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of LPS receptor molecules.
Figure 2: LPS and HSP70 FRET measurements.
Figure 3: LPS and GDF5 FRET measurements.
Figure 4: HSP70 and HSP90 FRET measurements after LPS stimulation.
Figure 5: TNF-α inhibition experiments.
Figure 6: TNF-α inhibition experiments.

Similar content being viewed by others

References

  1. Bone, R. C. The pathogenesis of sepsis. Ann. Intern. Med. 115, 457–460 (1991).

    Article  CAS  Google Scholar 

  2. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding-protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  3. Haziot, A. et al. The monocyte differentiation antigen, CD14, is anchored to the cell- membrane by a phosphatidylinositol linkage. J. Immunol. 141, 548–552 (1988).

    Google Scholar 

  4. Pugin, J. et al. CD14 is a pattern-recognition receptor. Immunity 1, 509–514 (1994).

    Article  CAS  Google Scholar 

  5. Lynn, W. A., Liu, Y. & Golenbock, D. T. Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect. Immun. 61, 4456–4461 (1993).

    Google Scholar 

  6. Blondin, C., Ledur, A., Cholley, B., Caroff, M. & Haeffner Cavaillon, N. Lipopolysaccharide complexed with soluble CD14 binds to normal human monocytes. Eur. J. Immunol. 27, 3303–3309 (1997).

    Article  CAS  Google Scholar 

  7. Troelstra, A. et al. Saturable CD14-dependent binding of fluorescein-labelled lipopolysaccharide to human monocytes. Infect. Immun. 65, 2272–2268 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Triantafilou, M., Triantafilou, K. & Fernandez, N. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influenced by endotoxin concentartion. Eur. J. Biochem. 267, 2218–2226 (2000).

    Article  CAS  Google Scholar 

  9. Gessani, S. et al. Enhanced production of LPS-induced cytokines during differentiation of human monocytes to macrophages. J. Immunol. 151, 3758–3764 (1993).

    CAS  PubMed  Google Scholar 

  10. Kirkland, T. N. et al. Identification of lipopolysaccharide binding proteins in 70Z/3 cells by photoaffinity crosslinking. J. Biol. Chem. 265, 9520–9524 (1990).

    CAS  PubMed  Google Scholar 

  11. Lei, M-G., Qureshi, N. & Morrison, D. C. Lipopolysaccharide (LPS) binding to 37 kDa and 38 kDa surface proteins on lymphoreticular cells. Immunol. Lett. 36, 245–250 (1988).

    Article  Google Scholar 

  12. Lei, M. G., Qureshi, N. & Morrison, D. C. Lipopolysaccharide (LPS) binding to 73 kDa and 35 kDa surface proteins on lymphoreticular cells: Preferential inhibition of LPS binding to the former by Rhodopseudomonas sphaeroides lipid A. Immunol. Lett. 36, 245–250 (1993).

    Article  CAS  Google Scholar 

  13. Triantafilou, K., Triantafilou, M. & Dedrick, R. L. Interactions of bacterial lipopolysaccharide and peptidoglycan with a 70kDa and an 80kDa protein on the cell surface of CD14 positive and CD14 negative cells. Hum. Immunol. 62, 50–58 (2001).

    Article  CAS  Google Scholar 

  14. Kirikae, T. et al. Identification of Re lipopolysaccharide-binding protein on murine erythrocyte membrane. FEMS Microbiol. Immunol. 32, 33–40 (1988).

    Article  CAS  Google Scholar 

  15. Hampton, R.Y., Golenbock, D. & Raetz, R. H. C. Lipid A binding sites in membranes of macrophage tumour cells. J. Biol. Chem. 263, 14802–14798 (1988).

    CAS  PubMed  Google Scholar 

  16. Poltorac, A. et al. Defective LPS signaling in C3H/Hej and C57BL/10ScCr mice: Mutations in TLR4 gene. Science 282, 2085–2090 (1998).

    Article  Google Scholar 

  17. Chow, J. C., Young, D. W., Golenbock, D., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274,10689–10694 (1999).

    Article  CAS  Google Scholar 

  18. Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–38 (1992).

    Article  CAS  Google Scholar 

  19. Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–575 (1996).

    Article  CAS  Google Scholar 

  20. Hirai, I. et al. Localization of pNT22 70 kDa Heat Shock Cognate-like protein in the plasma membrane. Cell Struct. Funct. 23, 153–160 (1998).

    Article  CAS  Google Scholar 

  21. Kaur, I. et al. Human peropheral gd T cells recognise hsp 60 molecules on Daudi Burkitt's lymphoma cells. J. Immunol. 150, 475–480 (1993).

    Google Scholar 

  22. Multhoff, G. et al. Heat shock protein 72 on tumour cells. J. Immunol. 158, 4341–4348 (1997).

    CAS  PubMed  Google Scholar 

  23. Guzhova, I. V. et al. Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internalisation. Cell Stress Chaper. 3, 67–74 (1998).

    Article  CAS  Google Scholar 

  24. Takashima, S. et al. Involvement of peptide antigens in the cytotoxicity between 70 kDa heat shock cognate protein-like molecule and CD3+, CD4,CD8, TCRαβ- killer T-cells. J. Immunol. 157, 3391–3396 (1996).

    CAS  PubMed  Google Scholar 

  25. Tsuboi, N. et al. Monoclonal antibody specifically reacting against 73-kiolodalton heat shock protein: possible expression on mammalian cell surface. Hybridoma 48, 2798–2802 (1994).

    Google Scholar 

  26. Srivastava, P. K., Udono, H., Blachere, N. E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL primimg. Immunogenetics 39, 93–98 (1994).

    Article  CAS  Google Scholar 

  27. Ciupitu, A. M., Petersson, M. & O'Donnell, C. L. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T cells. J. Exp. Med. 187, 685–690 (1998).

    Article  CAS  Google Scholar 

  28. Arnold, D. F. S., Rammensee, H. & Schild, H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunisation with the heat shock protein gp96. J. Exp. Med. 162, 3757–3764 (1995).

    Google Scholar 

  29. Birk, O. S. et al. The 60-kDa heat shock protein modulates allograft rejection. Proc. Natl Acad. Sci. USA 96, 5159–5165 (1999).

    Article  CAS  Google Scholar 

  30. Tohme, Z. N., Amar, S. & Van Dyke, T. E. Moesin functions as a lipopolysaccharide receptor on human monocytes. Infect. Immun. 67, 3215–3221 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manthey, C. L. & Vogel, S. N. Elimination of trace endotoxin protein from rough chemotype LPS. J. Endotoxin Res. 1, 84–90 (1994).

    Article  CAS  Google Scholar 

  32. Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. J. & Tobias, P. S. Toll-like receptor 4, but not toll-like receptor 2, is a signalling receptor for Escherichia and Salmonella Lipopolysaccharides. J. Immunol. 165, 5780–5786 (2000).

    Article  CAS  Google Scholar 

  33. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Repurification of lipopolysaccharide eliminates signalling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–624 (2000).

    Article  CAS  Google Scholar 

  34. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–825 (1978).

    Article  CAS  Google Scholar 

  35. Szollosi, J. et al. Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J. Immunol. 143, 208–214 (1989).

    CAS  PubMed  Google Scholar 

  36. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–12 (1994).

    Article  CAS  Google Scholar 

  37. Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–75 (1998).

    Article  CAS  Google Scholar 

  38. Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N. H. F. U. & Pavletich, N. P. Crystal structure of an hsp90-Geldanamycin complex: Targeting of a protein chaperone by an antitimour agent. Cell 89, 239–245 (1997).

    Article  CAS  Google Scholar 

  39. Murdoch, C., Monk, P. A. & Finn, A. CXC chemokine receptor expression on human endothelial cells. Cytokine 11, 1200–1205 (1999).

    Article  Google Scholar 

  40. Moriuchi, M., Moriuchi, H., Turner, W. & Fauci, A. S. Exposure to bacterial products renders macrophages highly susceptible to T-tropic HIV-1. J. Clin. Invest. 102,1540–1546 (1998).

    Article  CAS  Google Scholar 

  41. Yamashita, H. et al. Growth/Differentiation factor-5 induces angiogenesis in vivo. Exp. Cell Res. 235, 218–224 (1997).

    Article  CAS  Google Scholar 

  42. Breloer, M., Fleischer, B. & von Bonin, A. In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. J. Immunol. 162, 3141–3147 (1999).

    CAS  PubMed  Google Scholar 

  43. Byrd, C. A. et al. Heat shock 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc. Natl Acad. Sci. USA 96, 5645–5652 (1999).

    Article  CAS  Google Scholar 

  44. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (TLR4). J. Exp. Med. 189, 615–621 (1999).

    Article  CAS  Google Scholar 

  45. Jiang, Q., Akashi, S., Miyake, K. & Petty, H. R. Lipopolysaccharide induces physical proximity between CD14 and Toll-like Receptor 4 (TLR4) prior to nuclear translocation of NF-κB. J. Immunol. 165, 3541–3547 (2000).

    Article  CAS  Google Scholar 

  46. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  Google Scholar 

  47. Medzhitov, R. & Janeway, C. A. An ancient system of host defense. Curr. Opin. Immunol. 10, 12–18 (1998).

    Article  CAS  Google Scholar 

  48. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–402 (1997).

    Article  CAS  Google Scholar 

  49. Viriyakosol, S. & Kirkland, T. N. A region of human CD14 required for lipopolysaccharide-binding. J. Biol. Chem. 270, 361–368 (1995).

    Article  CAS  Google Scholar 

  50. Kenworthy, A. K. & Edidin, M. in Methods in Molecular Biology (ed. Gelb, M. H.) 37–49 (Humana Press Inc, Totowa, NJ, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank K. M. Wilson (GlaxoWellcome) for helpful discussions and D. Winant (University of Stanford) for help with mass spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Triantafilou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triantafilou, K., Triantafilou, M. & Dedrick, R. A CD14-independent LPS receptor cluster. Nat Immunol 2, 338–345 (2001). https://doi.org/10.1038/86342

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing