Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Not a minute to waste

We are finally beginning to unlock the mechanisms underlying Ca2+-stimulated muscle differentiation and cytokine-mediated muscle wasting. Gaining a better understanding of the signaling pathways that regulate muscle development and decay improves the prospects for repairing aged, injured and diseased muscle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signal transduction pathways that regulate myogenesis.

References

  1. Nelson, K.A. The Cancer-Anorexia-Cachexia syndrome. Seminars in Oncology 27, 64–68 (2000).

    CAS  PubMed  Google Scholar 

  2. Oliff, A. et al. Tumors secreting human TNF/cachetin induce cachexia in mice. Cell 50, 555–563 (1987).

    Article  CAS  Google Scholar 

  3. Lecker, S.H., Solomon, V., Mitch, W.E., & Goldberg, A.L. Muscle protein breakdown and the critical role of the ubiquitin proteasome pathway in normal and diseased states. J. Nutr. 129, 227–237 (1999).

    Article  Google Scholar 

  4. McKinsey, T.A., Zhang, C.-L., Lu, J. & Olson, E.N. Signal dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature (in the press).

  5. Guttridge, D.C., Mayo, M.W., Madrid, L.V., Wang, C.-Y., & Baldwin, A.S. NF-κB-induced loss of MyoD mRNA: Possible role in muscle decay and cachexia. Science 289, 2363–2366 (2000).

    Article  CAS  Google Scholar 

  6. Yaffe, D. & Saxel, O. Serial passaging and differentiation of myogenic cells isolated from mouse muscle. Nature 270, 725–727 (1977).

    Article  CAS  Google Scholar 

  7. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  Google Scholar 

  8. Archer, S. & Hodin, R. Histone acetylation and cancer. Curr. Opin. In Gen. and Dev. 9, 171–174 (1999).

    Article  CAS  Google Scholar 

  9. Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell Biol 17, 1010–1025 (1997).

    Article  CAS  Google Scholar 

  10. Chen, S.L., Dowhan, D.H., Hosking, B.M. & Muscat, G.E. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 14, 1209–1230 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Miska, E.A., Karlsson, C., Langley, E., Neilson, S., Pines, J. & Kouzarides, T. HDAC4 associates with and represses the MEF2 transcription factor. EMBO 18, 5099–5107 (1999)

    Article  CAS  Google Scholar 

  12. Lu, J., McKinsey, T.A., Zhang, C.L. & Olson, E.N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II HDACs. Mol. Cell 6, 233–244 (2000).

    Article  CAS  Google Scholar 

  13. Grozinger, C. & Schreiber, S. Regulation of HDAC 4 and 5 and transcriptional activity by 14-3-3 dependent cellular localisation. Proc. Natl. Acad. Sci. U S A 97, 7835–7840 (2000).

    Article  CAS  Google Scholar 

  14. Olson, E.N. & Sanders Williams, R. Calcineurin signalling and muscle remodeling. Cell 101, 689–692 (2000).

    Article  CAS  Google Scholar 

  15. Szalay, K., Razga, Z. & Duda, E. TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors, myoD and myogenin. Eur. J Cell Biol 74, 391–398 (1997).

    CAS  PubMed  Google Scholar 

  16. Kawamura, I. et al. Intratumoral injection of oligonucleotides to the NF-κB binding site inhibits cachexia in a mouse tumor model. Gene Ther. 6, 91–95 (1999).

    Article  CAS  Google Scholar 

  17. Megeney, L.A., Kablar, B., Garrett, K., Anderson, J.E. & Rudnicki, M.A. MyoD is required for myogenic stem cell function in adult skeletal muscle Genes Dev. 10, 1173–1183 (1996).

    Article  CAS  Google Scholar 

  18. Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G. & Baldwin A.S. NF-κB control cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785–5799 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscat, G., Dressel, U. Not a minute to waste. Nat Med 6, 1216–1217 (2000). https://doi.org/10.1038/81312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/81312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing