Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA

Abstract

The nuclear factor of activated T cells (NFAT) and the AP-1 heterodimer, Fos–Jun, cooperatively bind a composite DNA site and synergistically activate the expression of many immune-response genes. A 2.7-Å-resolution crystal structure of the DNA-binding domains of NFAT, Fos and Jun, in a quaternary complex with a DNA fragment containing the distal antigen-receptor response element from the interleukin-2 gene promoter, shows an extended interface between NFAT and AP-1, facilitated by the bending of Fos and DNA. The tight association of the three proteins on DNA creates a continuous groove for the recognition of 15 base pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequences of NFAT, NF-κB p50 and the bZIP regions of Fos and Jun.
Figure 2: The NFAT–AP-1–DNA complex (drawn with MOLSCRIPT48).
Figure 3: Superpositions of the NFAT–Fos–Jun–ARRE2 quaternary complex on the Fos–Jun–AP-1 site ternary complex (complex I of ref. 31).
Figure 4: DNA recognition in the NFAT–AP-1–ARRE2 complex.
Figure 5: The interface between NFAT and AP-1.

Similar content being viewed by others

References

  1. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  2. Crabtree, G. R. & Clipstone, N. A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).

    Article  CAS  Google Scholar 

  3. Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).

    Article  CAS  Google Scholar 

  4. Serfling, E., Avots, A. & Neumann, M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochim. Biophys. Acta 1263, 181–200 (1995).

    Article  Google Scholar 

  5. Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science 241, 202–205 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  7. Schreiber, S. L. & Crabtree, G. R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  Google Scholar 

  8. McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750–754 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Masuda, E. S. et al. NFATx, a novel member of the nuclear factor of activated T cells family that is expressed predominantly in the thymus. Mol. Cell Biol. 15, 2697–2706 (1995).

    Article  CAS  Google Scholar 

  11. Hoey, T., Sun, Y. L., Williamson, K. & Xu, X. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2, 461–472 (1995).

    Article  CAS  Google Scholar 

  12. Jain, J., Burgeon, E., Badalian, T. M., Hogan, P. G. & Rao, A. Asimilar DNA-binding motif in NFAT family proteins and the Rel homology region. J. Biol. Chem. 270, 4138–4145 (1995).

    Article  CAS  Google Scholar 

  13. Chytil, M. & Verdine, G. L. The Rel family of eukaryotic transcription factors. Curr. Opin. Struct. Biol. 6, 91–100 (1996).

    Article  CAS  Google Scholar 

  14. Shaw, K. T. et al. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc. Natl Acad. Sci. USA 92, 11205–11209 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Timmerman, L. A., Clipstone, N. A., Ho, S. N., Northrop, J. P. & Crabtree, G. R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–840 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Luo, C. et al. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proc. Natl Acad. Sci. USA 93, 8907–8912 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Shibasaki, F., Price, E. R., Milan, D. & McKeon, F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 382, 370–373 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Beals, C. R., Clipstone, N. A., Ho, S. N. & Crabtree, G. R. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 11, 824–834 (1997).

    Article  CAS  Google Scholar 

  19. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  20. Jain, J., McCaffrey, P. G., Valge-Archer, V. E. & Rao, A. Nuclear factor of activated T cells contains Fos and Jun. Nature 356, 801–804 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Jain, J., Miner, Z. & Rao, A. Analysis of the preexisting and nuclear forms of nuclear factor of activated T cells. J. Immunol. 151, 837–848 (1993).

    CAS  PubMed  Google Scholar 

  22. Cockerill, P. N. et al. Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP-1 and NFATp/c. Mol. Cell. Biol. 15, 2071–2079 (1995).

    Article  CAS  Google Scholar 

  23. Jain, J. et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365, 352–355 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Muller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373, 311–317 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Ghosh, G., van Duyne, G., Ghosh, S. & Sigler, P. B. Structure of NF-κB p50 homodimer bound to a κB site. Nature 373, 303–310 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Wolfe, S. A. et al. Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature 385, 172–176 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Chen, L. et al. Only one of the two DNA-bound orientations of AP-1 found in solution cooperates with NFATp. Curr. Biol. 5, 882–889 (1995).

    Article  CAS  Google Scholar 

  28. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence pattens and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  29. Ellenberger, T. E., Brandl, C. J., Struhl, K. & Harrison, S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  30. Konig, P. & Richmond, T. J. The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J. Mol. Biol. 233, 139–154 (1993).

    Article  CAS  Google Scholar 

  31. Glover, J. N. & Harrison, S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373, 257–261 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).

    Article  ADS  CAS  Google Scholar 

  33. Pabo, C. O. & Sauer, R. T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  34. Chen, L. Functional and Structural Studies of DNA Binding Proteins. Thesis, Harvard Univ., ((1994)).

    Google Scholar 

  35. Sun, L. J., Peterson, B. R. & Verdine, G. L. Dual role of the nuclear factor of activated T cells insert region in DNA recognition and cooperative contacts to activator protein 1. Proc. Natl Acad. Sci. USA 94, 4919–4924 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Peterson, B. R., Sun, L. J. & Verdine, G. L. Acritical arginine residue mediates cooperativity in the contact interface between transcription factors NFAT and AP-1. Proc. Natl Acad. Sci. USA 93, 13671–13676 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Yamamoto, K. R., Pearce, D., Thomas, J. & Miner, J. N. in Transcriptional Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 1169–1192 (Cold Spring Harbor Laboratory Press, NY, (1992)).

    Google Scholar 

  38. Johnson, A. in Transcriptional Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 975–1006 (Cold Spring Harbor Laboratory Press, NY, (1992)).

    Google Scholar 

  39. Tjian, R. & Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  40. Thanos, D. & Maniatis, T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).

    Article  CAS  Google Scholar 

  41. Garrity, P. A., Chen, D., Rothenberg, E. V. & Wold, B. J. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors. Mol. Cell. Biol. 14, 2159–2169 (1994).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. in Proceedings of the CCP4 study weekend (eds Sawyer, L., Isaacs, N. & Burley, S.) 56–62 (SERC Daresbury Laboratory, Warrington, (1993)).

    Google Scholar 

  43. Collaborative Computational Project Number 4.The CCP suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–776 (1994).

  44. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  ADS  CAS  Google Scholar 

  45. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic Computing and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) (Springer, New York, (1989)).

    Google Scholar 

  46. Brunger, A. T. X-PLOR Version 3.0: A System for Crystallography and NMR (Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  47. Kleywegt, G. & Jones, T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Walker, D.) (Daresbury Laboratory, Warrington, (1994)).

    Google Scholar 

  48. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  49. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Hsieh, B. Willard and N. Sinitskaya for help with protein and DNA preparation; K. Leong, T. Stehle, J. Wang, R. Chopra and M. Jacobs for help with data collection and computation; J. Jain, G. Verdine, S. Wolfe, D. Erlanson, P. Zhou, L. Sun, B. Peterson and C. Vaughan for discussions; and L. Berman, Z. Yin and M. Soltis for synchrotron technical assistance. L.C. was supported by the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation Fellowship, and by The Medical Foundation. S.C.H. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Chen or Stephen C. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Glover, J., Hogan, P. et al. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998). https://doi.org/10.1038/32100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32100

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing