Skip to main content
Log in

Abstract

Pulmonary air embolism is a well-known consequence of surgery, trauma, diving, and aviation. This article reviews the physiological effects, means of detection and methods of prevention and treatment of pulmonary air embolism. The primary physiological effects are elevated pulmonary artery pressures, increased ventilation-perfusion inhomogeneity, and right ventricular failure. The degree of physiological impairment depends on the volume of gas entrained, the rate of entrainment, the type of gas entrained, and the position of the patient when the embolism occurs. Transesophageal echocardiography is the most sensitive method of detection, but it is invasive. Precordial Doppler ultrasound is almost as sensitive and poses no risk to the patient. End-tidal carbon dioxide monitoring is used on all patients and is a moderately sensitive method of detection, which is useful during surgeries that have a low incidence of air embolism. For high-risk procedures, precordial Doppler ultrasound and a multi-orifice right heart catheter should be used to detect and treat pulmonary air embolism. Prevention measures include volume expansion, careful positioning, positive end-expiratory pressure, military anti-shock trousers, and jugular venous compression. Treatment of pulmonary air embolism includes flooding the surgical site with saline, controlling sites of air entry, repositioning the patient with the surgical site below the right atrium, aspiration of air from a central venous catheter, cessation of inhaled nitrous oxide, and resuscitation with oxygen, intravenous fluids, and inotropic agents. Some hypotheses on the effects of air in the pulmonary vasculature and investigational treatment options are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. James PB. Dysbarism: The medical problems from high and low atmospheric pressure. J R Coll Physicians Lond 1993; 27: 367–374

    PubMed  CAS  Google Scholar 

  2. Cockett AT, Pauley SM, Zehl DN, Pilmanis AA, Cockett WS. Pathophysiology of bends and decompression sickness: An overview with emphasis on treatment. Arch Surg 1979; 114: 296–301

    PubMed  CAS  Google Scholar 

  3. Deal CW, Barton P, Fielden F, Monk I. Hemodynamic effects of pulmonary air embolism. J Surg Res 1971; 11: 533–538

    Article  PubMed  CAS  Google Scholar 

  4. Oyama Y, Spencer MP. Cardiopulmonary effects of intravenous gas embolism; with special reference to fate of intravascular gas bubbles. Jpn Circ J 1971; 35: 1541–1549

    PubMed  CAS  Google Scholar 

  5. Verstappen FT, Bernards JA, Kreuzer AF. Effects of pulmonary gas embolism on circulation and respiration in the dog. II. Effects on respiration. Pflugers Arch 1977; 368: 599–604

    Google Scholar 

  6. Vann RD, Thalmann ED. Decompression physiology and practice. In: Bennett PB, DH Elliott, eds., The physiology and medicine of diving, 4th edition. London: Saunders, 1993: 376–432

    Google Scholar 

  7. Waligora JM, Horrigan DJ Jr, Conklin J. The effect of extended O2 prebreathing on altitude decompression sickness and venous gas bubbles. Aviat Space Environ Med 1987; 58 (Suppl): A110-A112

    PubMed  CAS  Google Scholar 

  8. Vartikar JV, Johnson MD, Datta S. Precordial Doppler monitoring and pulse oximetry during cesarean delivery: Detection of venous air embolism. Reg Anesth 1989; 14: 145–148

    PubMed  CAS  Google Scholar 

  9. Losasso TJ, Black S, Muzzi DA, Michenfelder JD, Cucchiara RF. Detection and hemodynamic consequences of venous air embolism. Does nitrous oxide make a difference? Anesthesiol 1992; 77: 148–152

    CAS  Google Scholar 

  10. Buckland RW, Manners JM. Venous air embolism during neurosurgery. A comparison of various methods of detection in man. Anaesthesia 1976; 31: 633–643

    PubMed  CAS  Google Scholar 

  11. Albin MS, Carroll RG, Maroon JC. Clinical considera-tions concerning detection of venous air embolism. Neurosurgery 1978; 3: 380–384

    PubMed  CAS  Google Scholar 

  12. Michel R. Air embolism in hip surgery. Anaesthesia 1980; 35: 858–862

    PubMed  CAS  Google Scholar 

  13. Ho AM, Ling E. Systemic air embolism after lung trauma. Anesthesiol 1999; 90: 564–575

    Article  CAS  Google Scholar 

  14. Brown MA, Hauschildt JP, Casola G, Gosink BB, Hoyt DB. Intravascular gas as an incidental finding at US after blunt abdominal trauma. Radiology 1999; 210: 405–408

    PubMed  CAS  Google Scholar 

  15. Southern DA, Arramovic J, Fitzsimmons K. Air embolism following abdominal stab-wound. Anaesth Intens Care 1996; 24: 623.

    CAS  Google Scholar 

  16. Murray IP. Complications of invasive monitoring. Med Instrum 1981; 15: 85–89

    PubMed  CAS  Google Scholar 

  17. Seidelin PH, Stolarek IH, Thompson AN. Central venous catheterization and fatal air embolism. Br J Hosp Med 1987; 38: 438–439

    PubMed  CAS  Google Scholar 

  18. Paw P, Sackier JM. Complications of laparoscopy and thoracoscopy. J Intens CareMed 1994; 9: 290–304

    CAS  Google Scholar 

  19. Isaacson KB. Complications of hysteroscopy. Obstet Gynecol Clin North Am 1999; 26: 39–51

    Article  PubMed  CAS  Google Scholar 

  20. Derouin M, Couture P, Boudreault D, Girard D, Gravel D. Detection of gas embolism by transesophageal echocardiography during laparoscopic cholecystectomy. Anesth Analg 1996; 82: 119–124

    Article  PubMed  CAS  Google Scholar 

  21. Butler BD, Hills BA. The lung as a filter for microbubbles. J Appl Physiol 1979; 47: 537–543

    PubMed  CAS  Google Scholar 

  22. Durant TM, Long J, Oppenheimer MJ. Pulmonary (venous) air embolism. Am Heart J 1947; 33: 269–281

    Article  CAS  PubMed  Google Scholar 

  23. Hlastala MP, Robertson HT, Ross BK. Gas exchange abnormalities produced by venous gas emboli. Respirat Physiol 1979; 36: 1–17.

    Article  CAS  Google Scholar 

  24. Verstappen FT, Bernards JA, Kreuzer F. Effects of pulmonary gas embolism on circulation and respiration in the dog. I. Effects on circulation. Pflugers Arch 1977; 368: 89–96

    Article  PubMed  CAS  Google Scholar 

  25. Adornato DC, Gildenberg PL, Ferrario CM, Smart J, Frost EA. Pathophysiology of intravenous air embolism in dogs. Anesthesiol 1978; 49: 120–127

    CAS  Google Scholar 

  26. Atkins CE, Lehner CE, Beck KA, Dubielzig RR, Nordheim EV, Lanphier EH. Experimental respiratory decompression sickness in sheep. J Appl Physiol 1988; 65: 1163–1171

    PubMed  CAS  Google Scholar 

  27. Butler BD, Hills BA. Transpulmonary passage of venous air emboli. J Appl Physiol 1985; 59: 543–547

    PubMed  CAS  Google Scholar 

  28. Deem S, McKinney S, Polissar NL, Hedges RG, Swenson ER. Hemodilution during venous gas embolization improves gas exchange, without altering V(A)/Q or pulmonary blood flow distributions. Anesthesiology 1999; 91: 1861–1872

    Article  PubMed  CAS  Google Scholar 

  29. Chang HK, Delaunois L, Boileau R, Martin RR. Redistribution of pulmonary blood flow during experimental air embolism. J Appl Physiol 1981; 51: 211–217

    PubMed  CAS  Google Scholar 

  30. Souders JE, Doshier JB, Polissar NL, Hlastala MP. Spatial distribution of venous gas emboli in the lungs. J Appl Physiol 1999; 87: 1937–1947

    PubMed  CAS  Google Scholar 

  31. Furuya H, Suzuki T, Okumura F, Kishi Y, Uefuji T. Detection of air embolism by transesophageal echocaridography. Anesthesiol 1983; 58: 124–129

    CAS  Google Scholar 

  32. Chang JL, Albin MS, Bunegin L, Hung TK. Analysis and comparison of venous air embolism detection methods. Neurosurgery 1980; 7: 135–141

    PubMed  CAS  Google Scholar 

  33. Maroon JC, Albin MS. Air embolism diagnosed by Doppler ultrasound. Anesth Analg 1974; 53: 399–402

    PubMed  CAS  Google Scholar 

  34. Chan BC, Chan FH, Lam FK, Lui PW, Poon PW. Fast detection of venous air embolism in Doppler heart sound using the wavelet transform. IEEE Trans Biomed Eng 1997; 44: 237–246

    Article  PubMed  CAS  Google Scholar 

  35. Lui PW, Chan BC, Chan FH, Poon PW, Wang H, Lam FK. Wavelet analysis of embolic heart sound detected by precordial Doppler ultrasound during continuous venous air embolism in dogs. Anesth Analg 1998; 86: 325–331

    Article  PubMed  CAS  Google Scholar 

  36. Drummond JC, Prutow RJ, Scheller MS. A comparison of the sensitivity of pulmonary artery pressure, end-tidal carbon dioxide, and end-tidal nitrogen in the detection of venous air embolism in the dog. Anesth Analg 1985; 64: 688–692

    PubMed  CAS  Google Scholar 

  37. Russell GB, Snider MT, Richard RB, Rutherford TM, Loomis JL. Detection of venous air embolism by continuous mixed venous oximetry in dogs. J Neurosurg Anesthesiol 1991; 3: 56–60

    PubMed  CAS  Google Scholar 

  38. Russell GB, Graybeal JM. Detection of venous air embo-lism: Comparison of oxygenation and ventilation monitoring methods in dogs. J Neurosurg Anesthesiol 1992; 4: 36–40

    PubMed  CAS  Google Scholar 

  39. The American Society of AnesthesiologistsTask Force on Pulmonary Artery Catheterization. Practice guidelines for pulmonary artery catheterization. Anesthesiology 1993; 78: 380–384

    Google Scholar 

  40. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996; 276: 889–897

    Google Scholar 

  41. Bowdle TA, Artru AA. Treatment of air embolismwith a special pulmonary artery catheter introducer sheath in sitting dogs. Anesthesiology 1988; 68: 107–110

    PubMed  CAS  Google Scholar 

  42. Russell GB, Richard RB, Snider MT. Detection of venous air embolism in dogs by emission spectrometry. J ClinMonit 1990; 6: 18–23

    CAS  Google Scholar 

  43. Glenski JA, Cucchiara RF, Michenfelder JD. Transeso-phageal echocardiography and transcutaneous O2 and CO2 monitoring for detection of venous air embolism. Anesthesiol 1986; 64: 541–545

    Article  CAS  Google Scholar 

  44. Glenski JA, Cucchiara RF. Transcutaneous O2 and CO2 monitoring of neurosurgical patients: Detection of air embolism. Anesthesiol 1986; 64: 546–550

    CAS  Google Scholar 

  45. Palmon SC, Moore LE, Lundberg J, Toung T. Venous air embolism: A review. J Clin Anesth 1997; 9: 157–251

    Article  Google Scholar 

  46. Toung T, Ngeow YK, Long DL, Rogers MC. Comparison of the effects of positive end-expiratory pressure and jugular venous compression on canine cerebral venous pressure. Anesthesiol 1984; 61: 169–172

    CAS  Google Scholar 

  47. Pearl RG, Larson CP Jr. Hemodynamic effects of positive end-expiratory pressure during continuous venous air embolism in the dog. Anesthesiology 1986; 64: 724–729

    Article  PubMed  CAS  Google Scholar 

  48. Meyer PG, Cuttaree H, Charron B, Jarreau MM, Perie AC, Sainte-Rose C. Prevention of venous air embolism in paediatric neurosurgical procedures performed in the sitting position by combined use of MAST suit and PEEP. Br J Anaesth 1994; 73: 795–800

    PubMed  CAS  Google Scholar 

  49. McCabe JB, Seidel DR, Jagger JA. Antishock trouser inflation and pulmonary vital capacity. Ann Emerg Med 1983; 12: 290–293

    Article  PubMed  CAS  Google Scholar 

  50. Borman KR, Aurbakken CM, Weigelt JA. Treatment priorities in combined blunt abdominal and aortic trauma. AmJ Surg 1982; 144: 728–732

    Article  CAS  Google Scholar 

  51. Melhorn U, Burke EJ, Butler BD, Davis KL, Katz J, Melamed E, Morris WP, Allen SJ. Body position does not affect the hemodynamic response to venous air embolism in dogs. Anesth Analg 1994; 79: 734–739

    Google Scholar 

  52. Geissler HJ, Allen SJ, Melhorn U, Davis KL, Morris WP, Butler BD. Effect of body repositioning after venous air embolism. An echocardiographic study. Anesthesiology 1997; 86: 710–717

    Article  PubMed  CAS  Google Scholar 

  53. Adornato DC, Gildenberg PL, Ferrario CM, Smart J, Frost EA. Pathophysiology of intravenous air embolism in dogs. Anesthesiology 1978; 49: 120–127

    PubMed  CAS  Google Scholar 

  54. Sink JD, Comer PB, James PM, Loveland SR. Evaluation of catheter placement in the treatment of venous air embolism. Ann Surg 1976; 183: 58–61

    PubMed  CAS  Google Scholar 

  55. Bowdle TA, Artru AA. Positioning the air aspiration pulmonary catheter introducer sheath by intravascular electrocardiography. Anesthesiology 1988; 69: 276–279

    PubMed  CAS  Google Scholar 

  56. Huang KL, Lin YC. Activation of complement and neutrophils increases vascular permeability during air embolism. Aviat Space Environ Med 1997; 68: 300–305

    PubMed  CAS  Google Scholar 

  57. Tanus-Santos JE, Gordo WM, Udelsmann A, Moreno H Jr. The hemodynamic effects of endothelin receptor antagonism during a venous air infusion in dogs. Anesth Analg 2000; 90: 102–106

    Article  PubMed  CAS  Google Scholar 

  58. Hjelde A, Brubakk AO, Bergh K, Videm V, Ustad AL. Effect of anti-C5a antibody on blood-lung and blood-brain barrier in rabbits after decompression. Undersea Hyperb Med 1999; 26: 249–256

    PubMed  CAS  Google Scholar 

  59. Spiess BD, McCarthy R, Piotrowski D, Ivankovich AD. Protection from venous air embolism with £uorocarbon emulsion FC-43. J Surg Res 1986; 41: 439–444

    Article  PubMed  CAS  Google Scholar 

  60. Schulz-Stubner S. Liquid ventilation: A theoretically beneficial approach in treating systemic air embolism in lung trauma. Anesthesiology 1999; 91: 1963

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souders, J.E. Pulmonary Air Embolism. J Clin Monit Comput 16, 375–383 (2000). https://doi.org/10.1023/A:1011455701892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011455701892

Navigation