Skip to main content
Log in

Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Airway mucus has a key role in protective innate immune responses, but excessive mucus production and secretion in proximal and in distal airways are associated with disabling symptoms (cough and sputum), lung function decline, exacerbations and mortality in patients with chronic obstructive pulmonary disease (COPD). Cellular and molecular mechanisms leading to mucin production and secretion have largely been identified using cultured epithelial cells and animal models. Cigarette smoke and microbial products are potent triggers of mucin production, which involves recognition of specific molecular patterns by cognate receptors and activation of metalloproteases at the epithelial cell surface, leading to epidermal growth factor receptor activation and mucin mRNA and protein synthesis. After mucin synthesis has occurred, mucins are tightly packed into intracytoplasmic granules. Many stimuli induce secretion of mucin granules from epithelial cells, but neutrophil serine proteases are the most potent inducers of mucin secretion. Neutrophils recruited to the airway epithelium also promote mucin production via neutrophil proteases and oxidative stress. Several drugs currently available for the treatment of COPD patients reduced mucus hypersecretion in preclinical models relevant to COPD, but their effects on mucus hypersecretion in humans have not been assessed. Testing the effects of these drugs and of novel molecules designed for reducing mucus production and/or secretion will require performing specifically designed clinical trials. These trials will be necessary to explore the hypothesis that reducing mucus hypersecretion is beneficial in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363:2233–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science. 2012;337:937–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Dickey BF. Walking on solid ground. Science. 2012;337:924–5.

    CAS  PubMed  Google Scholar 

  4. Kesimer M, Ehre C, Burns KA, Davis CW, Sheehan JK, Pickles RJ. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol. 2012;6:379–92.

    PubMed Central  PubMed  Google Scholar 

  5. Curran DR, Cohn L. Advances in mucous cell metaplasia: A plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol. 2010;42:268–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245–78.

    CAS  PubMed  Google Scholar 

  7. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, et al. Muc5b is required for airway defence. Nature. 2014;505:412–6.

    CAS  PubMed  Google Scholar 

  8. Ehre C, Worthington EN, Liesman RM, Grubb BR, Barbier D, O’Neal WK, et al. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc Natl Acad Sci USA. 2012;109:16528–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Innes AL, Woodruff PG, Ferrando RE, Donnelly S, Dolganov GM, Lazarus SC, et al. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest. 2006;130:1102–8.

    CAS  PubMed  Google Scholar 

  10. O’Donnell RA, Richter A, Ward J, Angco G, Mehta A, Rousseau K, et al. Expression of ErbB receptors and mucins in the airways of long term current smokers. Thorax. 2004;59:1032–40.

    PubMed Central  PubMed  Google Scholar 

  11. Niewoehner DE, Kleinerman J, Rice DB. Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med. 1974;291:755–8.

    CAS  PubMed  Google Scholar 

  12. Cosio MG, Hale KA, Niewoehner DE. Morphologic and morphometric effects of prolonged cigarette smoking on the small airways. Am Rev Respir Dis. 1980;122:265–71.

    CAS  PubMed  Google Scholar 

  13. Nagai A, West WW, Thurlbeck WM. The National Institutes of Health Intermittent Positive-Pressure Breathing trial: pathology studies. II. Correlation between morphologic findings, clinical findings, and evidence of expiratory air-flow obstruction. Am Rev Respir Dis. 1985;132:946–53.

    CAS  PubMed  Google Scholar 

  14. Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000;161:1016–21.

    CAS  PubMed  Google Scholar 

  15. Kim V, Kelemen SE, Abuel-Haija M, Gaughan JP, Sharafkaneh A, Evans CM, et al. Small airway mucous metaplasia and inflammation in chronic obstructive pulmonary disease. COPD. 2008;5:329–38.

    PubMed  Google Scholar 

  16. Caramori G, Di Gregorio C, Carlstedt I, Casolari P, Guzzinati I, Adcock IM, et al. Mucin expression in peripheral airways of patients with chronic obstructive pulmonary disease. Histopathology. 2004;45:477–84.

    CAS  PubMed  Google Scholar 

  17. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–53.

    CAS  PubMed  Google Scholar 

  18. Kirkham S, Kolsum U, Rousseau K, Singh D, Vestbo J, Thornton DJ. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178:1033–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Mullen JB, Wright JL, Wiggs BR, Pare PD, Hogg JC. Reassessment of inflammation of airways in chronic bronchitis. BMJ. 1985;291:1235–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Saetta M, Turato G, Facchini FM, Corbino L, Lucchini RE, Casoni G, et al. Inflammatory cells in the bronchial glands of smokers with chronic bronchitis. Am J Respir Crit Care Med. 1997;156:1633–9.

    CAS  PubMed  Google Scholar 

  21. Burgel PR. Chronic cough and sputum production: a clinical COPD phenotype? Eur Resp J. 2012;40:4–6.

    Google Scholar 

  22. Montes de Oca M, Halbert RJ, Lopez MV, Perez-Padilla R, Talamo C, Moreno D, et al. The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur Respir J. 2012;40:28–36.

  23. Burgel PR, Nesme-Meyer P, Chanez P, Caillaud D, Carre P, Perez T, et al. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest. 2009;135:975–82.

    PubMed  Google Scholar 

  24. Corhay JL, Vincken W, Schlesser M, Bossuyt P, Imschoot J. Chronic bronchitis in COPD patients is associated with increased risk of exacerbations: a cross-sectional multicentre study. Int J Clin Pract. 2013;67:1294–301.

    CAS  PubMed  Google Scholar 

  25. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am J Respir Crit Care Med. 1996;153:1530–5.

    CAS  PubMed  Google Scholar 

  26. Ekberg-Aronsson M, Pehrsson K, Nilsson JA, Nilsson PM, Löfdahl CG. Mortality in GOLD stages of COPD and its dependence on symptoms of chronic bronchitis. Respir Res. 2005;6:98–107.

    PubMed Central  PubMed  Google Scholar 

  27. Hogg JC, Chu FSF, Tan WC, Sin DD, Patel SA, Pare PD, et al. Survival after lung volume reduction in chronic obstructive pulmonary disease: insights from small airway pathology. Am J Respir Crit Care Med. 2007;176:454–9.

    PubMed Central  PubMed  Google Scholar 

  28. Burgel PR, Martin C. Mucus hypersecretion in COPD: should we only rely on symptoms? Eur Respir Rev. 2010;19:94–6.

    PubMed  Google Scholar 

  29. Davis CW, Dickey BF. Regulated airway goblet cell mucin secretion. Ann Rev Physiol. 2008;70:487–512.

    CAS  Google Scholar 

  30. Thai P, Loukoianov A, Wachi S, Wu R. Regulation of airway mucin gene expression. Ann Rev Physiol. 2008;70:405–29.

    CAS  Google Scholar 

  31. Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Ann Rev Physiol. 2008;70:459–86.

    CAS  Google Scholar 

  32. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135:505–12.

  33. Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A, et al. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim Biophys Acta. 1998;1406:251–9.

    CAS  PubMed  Google Scholar 

  34. Li JD, Dohrman AF, Gallup M, Miyata S, Gum JR, Kim SK, et al. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc Natl Acad Sci USA. 1997;94:967–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Londhe V, McNamara N, Lemjabbar H, Basbaum C. Viral dsRNA activates mucin transcription in airway epithelial cells. FEBS Lett. 2003;553:33–8.

    CAS  PubMed  Google Scholar 

  36. Tyner JW, Kim EY, Ide K, Pelletier MR, Roswit WT, Morton JD, et al. Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. J Clin Invest. 2006;116:309–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Neveu WA, Allard JB, Dienz O, Wargo MJ, Ciliberto G, Whittaker LA, et al. IL-6 is required for airway mucus production induced by inhaled fungal allergens. J Immunol. 2009;183:1732–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Oguma T, Asano K, Tomomatsu K, Kodama M, Fukunaga K, Shiomi T, et al. Induction of mucin and MUC5AC expression by the protease activity of Aspergillus fumigatus in airway epithelial cells. J Immunol. 2011;187:999–1005.

    CAS  PubMed  Google Scholar 

  39. Voynow JA, Fischer BM, Malarkey DE, Burch LH, Wong T, Longphre M, et al. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1293–302.

    CAS  PubMed  Google Scholar 

  40. Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol Lung Cell Mol Physiol. 1999;276:L835–43.

    CAS  Google Scholar 

  41. Harkema JR, Wagner JG. Non-allergic models of mucous cell metaplasia and mucus hypersecretion in rat nasal and pulmonary airways. Novartis Found Symp. 2002;248:181–97.

    PubMed  Google Scholar 

  42. Takeyama K, Jung B, Shim JJ, Burgel PR, Dao-Pick T, Ueki IF, et al. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2001;280:L165–72.

    CAS  PubMed  Google Scholar 

  43. Borchers MT, Wert SE, Leikauf GD. Acrolein-induced MUC5AC expression in rat airways. Am J Physiol. 1998;274:L573–81.

    CAS  PubMed  Google Scholar 

  44. Gundavarapu S, Wilder JA, Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, et al. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia, and airway mucus formation in vitro and in vivo. J Allergy Clin Immunol. 2012;130:770–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Cortijo J, Mata M, Milara J, Donet E, Gavaldà A, Miralpeix M, et al. Aclidinium inhibits cholinergic and tobacco smoke-induced MUC5AC in human airways. Eur Respir J. 2011;37:244–54.

    CAS  PubMed  Google Scholar 

  46. Chen Y, Zhao YH, Wu R. Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates. Am J Respir Cell Mol Biol. 2001;25:409–17.

    CAS  PubMed  Google Scholar 

  47. Bautista MV, Chen Y, Ivanova VS, Rahimi MK, Watson AM, Rose MC. IL-8 regulates mucin gene expression at the posttranscriptional level in lung epithelial cells. J Immunol. 2009;183:2159–66.

    CAS  PubMed  Google Scholar 

  48. Monzon ME, Forteza RM, Casalino-Matsuda SM. MCP-1/CCR2B-dependent loop upregulates MUC5AC and MUC5B in human airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2011;300:L204–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, et al. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci USA. 1999;96:3081–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium. Thorax. 2004;59:992–6.

    PubMed Central  PubMed  Google Scholar 

  51. Burgel PR, Nadel JA. Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases. Eur Respir J. 2008;32:1068–81.

    CAS  PubMed  Google Scholar 

  52. Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004;131:953–64.

    CAS  PubMed  Google Scholar 

  53. Zhen G, Park SW, Nguyenvu LT, Rodriguez MW, Barbeau R, Paquet AC, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007;36:244–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Park K-S, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest. 2007;117:978–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE, Maeda Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009;119:2914–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Plantier L, Crestani B, Wert SE, Dehoux M, Zweytick B, Guenther A, et al. Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis. Thorax. 2011;66:651–7.

    PubMed  Google Scholar 

  57. Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol. 2005;175:4009–116.

    CAS  PubMed  Google Scholar 

  58. Shao MXG, Ueki IF, Nadel JA. Tumor necrosis factor α-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA. 2003;100:11618–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Koff JL, Shao MXG, Ueki IF, Nadel JA. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1068–75.

    CAS  PubMed  Google Scholar 

  60. Kim S, Lewis C, Nadel JA. CCL20/CCR6 feedback exaggerates epidermal growth factor receptor-dependent MUC5AC mucin production in human airway epithelial (NCI-H292) cells. J Immunol. 2011;186:3392–400.

    CAS  PubMed  Google Scholar 

  61. Shao MX, Nadel JA. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA. 2005;102:767–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS. Expression of epidermal growth factors and their receptors in the bronchial epithelium of subjects with chronic obstructive pulmonary disease. Am J Clin Pathol. 2006;125:184–92.

    PubMed  Google Scholar 

  63. Kim S, Shao MX-G, Nadel JA. Mucus production, secretion, and clearance. In: Mason RJ, Broadddus VC, Murray JF, Nadel JA, editors. Textbook of respiratory medicine. 4th ed. Philadelphia: Saunders; 2005. p. 330–54.

    Google Scholar 

  64. Sommerhoff CP, Fang KC, Nadel JA, Caughey GH. Classical second messengers are not involved in proteinase-induced degranulation of airway gland cells. Am J Physiol. 1996;271:L796–803.

    CAS  PubMed  Google Scholar 

  65. Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest. 1990;85:682–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne). 2013;4:129.

    PubMed Central  PubMed  Google Scholar 

  67. O’Donnell RA, Peebles C, Ward JA, Daraker A, Angco G, Broberg P, et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59:837–42.

    PubMed Central  PubMed  Google Scholar 

  68. Agusti C, Takeyama K, Cardell LO, Ueki I, Lausier J, Lou YP, et al. Goblet cell degranulation after antigen challenge in sensitized guinea pigs. Role of neutrophils. Am J Respir Crit Care Med. 1998;158:1253–8.

    CAS  PubMed  Google Scholar 

  69. Takeyama K, Agusti C, Ueki I, Lausier J, Cardell LO, Nadel JA. Neutrophil-dependent goblet cell degranulation: role of membrane-bound elastase and adhesion molecules. Am J Physiol. 1998;275:L294–302.

    CAS  PubMed  Google Scholar 

  70. Kohri K, Ueki IF, Nadel JA. Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol. 2002;283:L531–40.

    CAS  PubMed  Google Scholar 

  71. Innes AL, Carrington SD, Thornton DJ, Kirkham S, Rousseau K, Dougherty RH, et al. Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma. Am J Respir Crit Care Med. 2009;180:203–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Sumner H, Woodcock A, Kolsum U, Dockry R, Lazaar AL, Singh D, et al. Predictors of objective cough frequency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:943–9.

    PubMed  Google Scholar 

  73. Barnes PJ. New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol. 2007;119:1055–62.

    CAS  PubMed  Google Scholar 

  74. Burgel PR, Wedzicha JA. Chronic cough in chronic obstructive pulmonary disease: time for listening? Am J Respir Crit Care Med. 2013;187:902–4.

    PubMed  Google Scholar 

  75. Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131:636–45.

    CAS  PubMed  Google Scholar 

  76. Hauber H-P, Goldmann T, Vollmer E, Wollenberg B, Zabel P. Effect of dexamethasone and ACC on bacteria-induced mucin expression in human airway mucosa. Am J Respir Cell Mol Biol. 2007;37:606–16.

    CAS  PubMed  Google Scholar 

  77. Komatsu K, Jono H, Lim JH, Imasato A, Xu H, Kai H, et al. Glucocorticoids inhibit nontypeable Haemophilus influenzae-induced MUC5AC mucin expression via MAPK phosphatase-1-dependent inhibition of p38 MAPK. Biochem Biophys Res Commun. 2008;377:763–8.

    CAS  PubMed  Google Scholar 

  78. Sprenger L, Goldmann T, Vollmer E, Steffen A, Wollenberg B, Zabel P, et al. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways. Pulm Pharmacol Ther. 2011;24:232–9.

    CAS  PubMed  Google Scholar 

  79. Takami S, Mizuno T, Oyanagi T, Tadaki H, Suzuki T, Muramatsu K, et al. Glucocorticoids inhibit MUC5AC production induced by transforming growth factor-α in human respiratory cells. Allergol Int. 2012;61:451–9.

    CAS  PubMed  Google Scholar 

  80. Kanoh S, Tanabe T, Rubin BK. IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells. Clin Exp Allergy. 2011;41:1747–56.

    CAS  PubMed  Google Scholar 

  81. Burgel PR, Cardell LO, Ueki IF, Nadel JA. Intranasal steroids decrease eosinophils but not mucin expression in nasal polyps. Eur Respir J. 2004;24:594–600.

    CAS  PubMed  Google Scholar 

  82. Martínez-Antón A, de Bolós C, Alobid I, Benítez P, Roca-Ferrer J, Picado C, et al. Corticosteroid therapy increases membrane-tethered while decreases secreted mucin expression in nasal polyps. Allergy. 2008;63:1368–76.

    PubMed  Google Scholar 

  83. Decramer M, Janssens W. Mucoactive therapy in COPD. Eur Respir Rev. 2010;19:134–40.

    CAS  PubMed  Google Scholar 

  84. Decramer M, Rutten-van Molken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365:1552–60.

  85. Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Wai KY, et al. High-dose N-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest. 2013;144:106–18.

    CAS  PubMed  Google Scholar 

  86. Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet. 2008;371:2013–8.

    CAS  PubMed  Google Scholar 

  87. Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-l-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82:548–55.

    CAS  PubMed  Google Scholar 

  88. Yasuo M, Fujimoto K, Imamura H, Ushiki A, Kanda S, Tsushima K, et al. l-carbocisteine reduces neutrophil elastase-induced mucin production. Respir Physiol Neurobiol. 2009;167:214–6.

    CAS  PubMed  Google Scholar 

  89. Takeyama K, Dabbagh K, Jeong Shim J, Dao-Pick T, Ueki IF, Nadel JA. Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J Immunol. 2000;164:1546–52.

    CAS  PubMed  Google Scholar 

  90. Sueyoshi S, Miyata Y, Masumoto Y, Ishibashi Y, Matsuzawa S, Harano N, et al. Reduced airway inflammation and remodeling in parallel with mucin 5AC protein expression decreased by s-carboxymethylcysteine, a mucoregulant, in the airways of rats exposed to sulfur dioxide. Int Arch Allergy Immunol. 2004;134:273–80.

    CAS  PubMed  Google Scholar 

  91. Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, et al. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS ONE. 2012;7:e48037.

  92. Gross NJ, Skorodin MS. Role of the parasympathetic system in airway obstruction due to emphysema. N Engl J Med. 1984;311:421–5.

    CAS  PubMed  Google Scholar 

  93. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:347–65.

    CAS  PubMed  Google Scholar 

  94. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359:1543–54.

    CAS  PubMed  Google Scholar 

  95. Arai N, Kondo M, Izumo T, Tamaoki J, Nagai A. Inhibition of neutrophil elastase-induced goblet cell metaplasia by tiotropium in mice. Eur Respir J. 2010;35:1164–71.

    CAS  PubMed  Google Scholar 

  96. Pera T, Zuidhof A, Valadas J, Smit M, Schoemaker RG, Gosens R, et al. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD. Eur Respir J. 2011;38:789–96.

    CAS  PubMed  Google Scholar 

  97. Beghè B, Rabe KF, Fabbri LM. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med. 2013;188:271–8.

    PubMed  Google Scholar 

  98. Mata M, Sarriá B, Buenestado A, Cortijo J, Cerdá M, Morcillo EJ. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax. 2005;60:144–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sturton G, Fitzgerald M. Phosphodiesterase 4 inhibitors for the treatment of COPD. Chest. 2002;121(5 Suppl):192S–6S.

    CAS  PubMed  Google Scholar 

  100. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JAJ, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178:1139–47.

    CAS  PubMed  Google Scholar 

  102. Spagnolo P, Fabbri LM, Bush A. Long-term macrolide treatment for chronic respiratory disease. Eur Respir J. 2013;42:239–51.

    CAS  PubMed  Google Scholar 

  103. Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y, et al. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxododecanoyl) homoserine lactone in NCI-H292 Cells. Antimicrob Agents Chemother. 2004;48:3457–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Morinaga Y, Yanagihara K, Miyashita N, Seki M, Izumikawa K, Kakeya H, et al. Azithromycin, clarithromycin and telithromycin inhibit MUC5AC induction by Chlamydophila pneumoniae in airway epithelial cells. Pulm Pharmacol Ther. 2009;22:580–6.

    CAS  PubMed  Google Scholar 

  105. Araki N, Yanagihara K, Morinaga Y, Yamada K, Nakamura S, Yamada Y, et al. Azithromycin inhibits nontypeable Haemophilus influenzae-induced MUC5AC expression and secretion via inhibition of activator protein-1 in human airway epithelial cells. Eur J Pharmacol. 2010;644:209–14.

    CAS  PubMed  Google Scholar 

  106. Shimizu T, Shimizu S. Azithromycin inhibits mucus hypersecretion from airway epithelial cells. Mediators Inflamm. 2012;2012:1–6.

    Google Scholar 

  107. Nagaoka K, Yanagihara K, Harada Y, Yamada K, Migiyama Y, Morinaga Y, et al. Macrolides inhibit fusobacterium nucleatum-induced MUC5AC production in human airway epithelial cells. Antimicrob Agents Chemother. 2013;57:1844–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ishimoto H, Mukae H, Sakamoto N, Amenomori M, Kitazaki T, Imamura Y, et al. Different effects of telithromycin on MUC5AC production induced by human neutrophil peptide-1 or lipopolysaccharide in NCI-H292 cells compared with azithromycin and clarithromycin. J Antimicrob Chemother. 2009;63:109–14.

    CAS  PubMed  Google Scholar 

  109. Inoue D, Kubo H, Sasaki T, Yasuda H, Numasaki M, Sasaki H, et al. Erythromycin attenuates MUC5AC synthesis and secretion in cultured human tracheal cells infected with RV14. Respirology. 2008;13:215–20.

    PubMed  Google Scholar 

  110. Ou X-M, Feng Y-L, Wen F-Q, Wang K, Yang J, Deng Z-P, et al. Macrolides attenuate mucus hypersecretion in rat airways through inactivation of NF-κB: Macrolides and mucus hypersecretion. Respirology. 2008;13:63–72.

    PubMed  Google Scholar 

  111. Otsu K, Ishinaga H, Suzuki S, Sugawara A, Sunazuka T, Omura S, et al. Effects of a novel nonantibiotic macrolide, EM900, on cytokine and mucin gene expression in a human airway epithelial cell line. Pharmacology. 2011;88:327–32.

    CAS  PubMed  Google Scholar 

  112. Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, et al. Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol. 2003;285:L847–53.

    CAS  PubMed  Google Scholar 

  113. Liao BC, Lin CC, Yang JC. First-line management of EGFR-mutated advanced lung adenocarcinoma: recent developments. Drugs. 2013;73:357–69.

    CAS  PubMed  Google Scholar 

  114. Kitazaki T, Soda H, Doi S, Nakano H, Nakamura Y, Kohno S. Gefitinib inhibits MUC5AC synthesis in mucin-secreting non-small cell lung cancer cells. Lung Cancer. 2005;50:19–24.

  115. Yu H, Li Q, Kolosov VP, Perelman JM, Zhou X. Regulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways. J Appl Toxicol. 2012;32:282–92.

    CAS  PubMed  Google Scholar 

  116. Woodruff PG, Wolff M, Hohlfeld JM, Krug N, Dransfield MT, Sutherland ER, et al. Safety and efficacy of an inhaled epidermal growth factor receptor inhibitor (BIBW 2948 BS) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181:438–45.

    CAS  PubMed  Google Scholar 

  117. Lee SY, Kang EJ, Hur GY, Jung KH, Jung HC, Lee SY, et al. Peroxisome proliferator-activated receptor- inhibits cigarette smoke solution-induced mucin production in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 2006;291:L84–90.

    CAS  PubMed  Google Scholar 

  118. Rennard SI, Flavin SK, Agarwal PK, Lo KH, Barnathan ES. Long-term safety study of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Respir Med. 2013;107:424–32.

    PubMed  Google Scholar 

  119. Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol. 2006;533:101–9.

    CAS  PubMed  Google Scholar 

  120. Liu D-S, Liu W-J, Chen L, Ou X-M, Wang T, Feng Y-L, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates acrolein-induced airway mucus hypersecretion in rats. Toxicology. 2009;260:112–9.

    CAS  PubMed  Google Scholar 

  121. Young RP, Hopkins R, Eaton TE. Pharmacological actions of statins: potential utility in COPD. Eur Respir Rev. 2009;18:222–32.

    CAS  PubMed  Google Scholar 

  122. Chen YJ, Chen P, Wang HX, Wang T, Chen L, Wang X, et al. Simvastatin attenuates acrolein-induced mucin production in rats: involvement of the Ras/extracellular signal-regulated kinase pathway. Int Immunopharmacol. 2013;10:685–93.

    Google Scholar 

  123. Ou XM, Wang BD, Wen FQ, Feng YL, Huang XY, Xiao J. Simvastatin attenuates lipopolysaccharide-induced airway mucus hypersecretion in rats. Chin Med J (Engl). 2008;121:1680–7.

    CAS  PubMed  Google Scholar 

  124. Wang T, Liu Y, Chen L, Wang X, Hu XR, Feng YL, et al. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. Eur Respir J. 2009;33:1122–32.

    CAS  PubMed  Google Scholar 

  125. Vonk-Noordegraaf A, Boerrigter BG. Sildenafil: a definitive NO in COPD. Eur Respir J. 2013;42:893–4.

    CAS  PubMed  Google Scholar 

  126. An J, Li J-Q, Wang T, Li X-O, Guo L-L, Wan C, et al. Blocking of thromboxane A2 receptor attenuates airway mucus hyperproduction induced by cigarette smoke. Eur J Pharmacol. 2013;703:11–7.

    CAS  PubMed  Google Scholar 

  127. Hegab AE, Sakamoto T, Nomura A, Ishii Y, Morishima Y, Iizuka T, et al. Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1. Chest. 2007;131:1149–56.

    CAS  PubMed  Google Scholar 

  128. Roger P, Gascard JP, Bara J, de Montpreville VT, Brink C. MUC5AC mucin release from human airways in vitro: effects of indomethacin and Bay X1005. Mediators Inflamm. 2001;10:33–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Stebbins KJ, Broadhead AR, Baccei CS, Scott JM, Truong YP, Coate H, et al. Pharmacological blockade of the DP2 receptor inhibits cigarette smoke-induced inflammation, mucus cell metaplasia, and epithelial hyperplasia in the mouse lung. J Pharmacol Exp Ther. 2010;332:764–75.

    CAS  PubMed  Google Scholar 

  130. Stebbins KJ, Evans JF, Lorrain DS. DP2 receptor antagonists: novel therapeutic target for copd. Mol Cell Phamacol. 2010;2:89–96.

    CAS  Google Scholar 

  131. Pera T, Zuidhof AB, Smit M, Menzen MH, Klein T, Flik G, et al. Arginase inhibition prevents inflammation and remodeling in a Guinea pig model of chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2014;349:229–38.

    CAS  PubMed  Google Scholar 

  132. Griffin S, Carroll TP, Greene CM, O’Neill SJ, Taggart CC, McElvaney NG. Effect of pro-inflammatory stimuli on mucin expression and inhibition by secretory leucoprotease inhibitor. Cell Microbiol. 2007;9:670–9.

    CAS  PubMed  Google Scholar 

  133. Zani ML, Tanga A, Saidi A, Serrano H, Dallet-Choisy S, Baranger K, et al. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans. 2011;39:1441–6.

    CAS  PubMed  Google Scholar 

  134. Garcia-Verdugo I, Descamps D, Chignard M, Touqui L, Sallenave JM. Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie. 2010;92:1608–17.

    CAS  PubMed  Google Scholar 

  135. Foster WM, Adler KB, Crews AL, Potts EN, Fischer BM, Voynow JA. MARCKS-related peptide modulates in vivo the secretion of airway Muc5ac. Am J Physiol Lung Cell Mol Physiol. 2010;299:L345–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Singer M, Martin LD, Vargaftig BB, Park J, Gruber AD, Li Y, et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat Med. 2004;10:193–6.

    CAS  PubMed  Google Scholar 

  137. Lampe WR, Park J, Fang S, Crews AL, Adler KB. Calpain and MARCKS protein regulation of airway mucin secretion. Pulm Pharmacol Ther. 2012;25:427–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Jinnai M, Niimi A, Ueda T, Matsuoka H, Takemura M, Yamaguchi M, et al. Induced sputum concentrations of mucin in patients with asthma and chronic cough. Chest. 2010;137:1122–9.

    PubMed  Google Scholar 

  139. Burgel PR, Bourdin A, Chanez P, Chabot F, Chaouat A, Chinet T, et al. Update on the roles of distal airways in COPD. Eur Respir Rev. 2011;20:7–22.

    PubMed  Google Scholar 

  140. Sham D, Wesley UV, Hristova M, van der Vliet A. ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS ONE. 2013;8:e54391.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Val S, Belade E, George I, Boczkowski J, Baeza-Squiban A. Fine PM induce airway MUC5AC expression through the autocrine effect of amphiregulin. Arch Toxicol. 2012;86:1851–9.

    CAS  PubMed  Google Scholar 

  142. Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, et al. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology. 2008;124:401–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett. 2003;544:129–32.

    CAS  PubMed  Google Scholar 

  144. Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. J Biol Chem. 1999;274:9707–20.

    CAS  PubMed  Google Scholar 

  145. Zhu L, Lee P-K, Lee W-M, Zhao Y, Yu D, Chen Y. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol. 2009;40:610–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Monick M, Staber J, Thomas K, Hunninghake G. Respiratory syncytial virus infection results in activation of multiple protein kinase C isoforms leading to activation of mitogen-activated protein kinase. J Immunol. 2001;166:2681–7.

    CAS  PubMed  Google Scholar 

  147. Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med. 2002;8:41–6.

    CAS  PubMed  Google Scholar 

  148. Shao MX, Nakanaga T, Nadel JA. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L420–7.

    CAS  PubMed  Google Scholar 

  149. Barbier D, Garcia-Verdugo I, Pothlichet J, Khazen R, Descamps D, Rousseau K, et al. Influenza A induces the major secreted airway mucin MUC5AC in a protease–EGFR–extracellular regulated kinase-Sp1-dependent pathway. Am J Respir Cell Mol Biol. 2012;47:149–57.

    CAS  PubMed  Google Scholar 

  150. Deshmukh HS, Shaver C, Case LM, Dietsch M, Wesselkamper SC, Hardie WD, et al. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am J Respir Cell Mol Biol. 2008;38:446–54.

  151. Sommerhoff CP, Fang KC, Nadel JA, Caughey GH. Classical second messengers are not involved in proteinase-induced degranulation of airway gland cells. Am J Physiol. 1996;271:L796–803.

    CAS  PubMed  Google Scholar 

  152. Li Y, Martin LD, Spizz G, Adler KB. MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem. 2001;276:40982–90.

    CAS  PubMed  Google Scholar 

  153. Verdugo P. Goblet cells secretion and mucogenesis. Ann Rev Physiol. 1990;52:157–76.

    CAS  Google Scholar 

  154. Mata M, Martinez I, Melero JA, Tenor H, Cortijo J. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells. PLoS ONE. 2013;8:e69670.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Lu S, Liu H, Farley JM. Macrolide antibiotics inhibit mucus secretion and calcium entry in swine airway submucosal mucous gland cells. J Pharmacol Exp Ther. 2011;336:178–87.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Clémence Martin and Justine Frija-Masson reported no conflict of interest. During the past 5 years, Pierre-Régis Burgel has received fees for lecturing or participating in advisory boards from the following pharmaceutical companies: Astra-Zeneca, Almirall, Boehringer-Ingelheim, Chiesi, GSK, Novartis, Nycomed/Takeda, and Pfizer.

Pierre-Regis Burgel is the receiver of grants from Chancellerie de l’Université de Paris, Association Vaincre la Mucoviscidose and Association Cardif. Justine Frija-Masson is the receiver of a fellowship from the Fondation Groupama pour la Santé.

No sources of funding were used to support the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Régis Burgel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C., Frija-Masson, J. & Burgel, PR. Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD?. Drugs 74, 1073–1089 (2014). https://doi.org/10.1007/s40265-014-0235-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0235-3

Keywords

Navigation