Skip to main content
Log in

Neutrophils in asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma is a complex disease with a significant inflammatory component. Multiple cell types are involved in its pathophysiology. The presence of eosinophils, the cell usually associated with allergic diseases, does not fully explain the inflammation found in asthma. Neutrophils are present in the airway of the patient with asthma in special circumstances and may represent different asthma phenotypes. Neutrophils are activated and are able to release mediators that promote and prolong asthma symptoms. Increasing evidence suggest that neutrophils may be central players with an important role in the pulmonary inflammatory process present in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Turner MO, Hussack P, Sears MR, et al.: Exacerbations of asthma without sputum eosinophilia. Thorax 1995, 50:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  2. Douwes J, Gibson P, Pekkanen J, Pearce N: Non-eosinophilic asthma: importance and possible mechanisms. Thorax 2002, 57:643–648.

    Article  PubMed  CAS  Google Scholar 

  3. Gibson PG, Simpson JL, Saltos N: Heterogeneity of airway inflammation in persistent asthma. Chest 2001, 119:1329–1336.

    Article  PubMed  CAS  Google Scholar 

  4. Green RH, Brightling CE, Woltmann G, et al.: Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 2002, 57:875–879.

    Article  PubMed  CAS  Google Scholar 

  5. Sur S, Crotty TB, Kephart GM, et al.: Sudden onset fatal asthma: a distinct entity with few eosinophils and relatively more eosinophils in the airway submucosa? Am Rev Respir Dis 1993, 148:713–719.

    PubMed  CAS  Google Scholar 

  6. Yasui K, Kobayashi N, Yamazaki T, et al.: Neutrophilic inflammation in childhood bronchial asthma. Thorax 2005, 60:704–707.

    Article  PubMed  CAS  Google Scholar 

  7. Kamath AV, Pavord ID, Ruparelia PR, Chilvers ER: Is the neutrophil the key effector cell in severe asthma? Thorax 2005, 60:529–530.

    Article  PubMed  CAS  Google Scholar 

  8. Norzila MZ, Fakes K, Henry RL, et al.: Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am J Respir Crit Care Med 2000, 161:769–774.

    PubMed  CAS  Google Scholar 

  9. Fahy JV, Kim KW, Liu J, Boushey HA: Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 1995, 95:843–852.

    Article  PubMed  CAS  Google Scholar 

  10. Lamblin C, Gosset P, Tillie-Leblond I, et al.: Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med 1998, 157:394–402.

    PubMed  CAS  Google Scholar 

  11. Smith HR, Larsen GL, Cherniack RM et al.: Inflammatory cells and eicosanoid mediators in subjects with late asthmatic responses and increases in airway responsiveness. J Allergy Clin Immunol 1992, 89:1076–1084.

    Article  PubMed  CAS  Google Scholar 

  12. Teran LM, Carroll M, Frew AJ, et al.: Neutrophil influx and interleukin-8 release after segmental allergen or saline challenge in asthmatics. Int Arch Allergy Immunol 1995, 107:374–375.

    Article  PubMed  CAS  Google Scholar 

  13. Casale TB, Costa JJ, Galli SJ: TNF alpha is important in human lung allergic reactions. Am J Respir Cell Mol Biol 1996, 15:35–44.

    PubMed  CAS  Google Scholar 

  14. Gounni AS, Lamkhioued B, Koussih L, et al.: Human neutrophils express the high-affinity receptor for immunoglobulin E (FcεRI): role in asthma. FASEB J 2001, 15:940.

    Article  PubMed  CAS  Google Scholar 

  15. Coffey MJ, Wheeler CS, Gross KB, et al.: Increased 5-lipoxygenase metabolism in the lungs of human subjects exposed to ozone. Toxicology 1996, 114:187–197.

    Article  PubMed  Google Scholar 

  16. Fahy JV, Wong HH, Liu JT, Boushey HA: Analysis of induced sputum after air and ozone exposures in healthy subjects. Environ Res 1995, 70:77–83.

    Article  PubMed  CAS  Google Scholar 

  17. Barck C, Lundahl J, Halldén G, Bylin G: Brief exposures to NO2 augment the allergic inflammation in asthmatics. Environ Res 2005, 97:58–66.

    Article  PubMed  CAS  Google Scholar 

  18. Adelroth E, Hedlund U, Blomberg A, et al.: Airway inflammation in iron ore miners exposed to dust and diesel exhaust. Eur Respir J 2006, 27:714–719.

    Article  PubMed  CAS  Google Scholar 

  19. Moore WC, Peters SP: Severe asthma: an overview. J Allergy Clin Immunol 2006, 117:487–494.

    Article  PubMed  Google Scholar 

  20. Jatakanon A, Uasuf C, Maziak W, et al.: Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999, 160:1532–1539.

    PubMed  CAS  Google Scholar 

  21. Silvestri M, Bontempelli M, Giacomelli M, et al.: High serum levels of tumour necrosis factor-alpha and interleukin-8 in severe asthma: markers of systemic inflammation? Clin Exp Allergy 2006, 36:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  22. Wenzel SE, Szefler SJ, Leung DY, et al.: Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 1997, 156:737–743.

    PubMed  CAS  Google Scholar 

  23. Louis R, Lau LC, Bron AO, et al.: The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 2000, 161:9–16.

    PubMed  CAS  Google Scholar 

  24. Wenzel SE, Schwartz LB, Langmack EL, et al.: Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999, 160:1001–1008.

    PubMed  CAS  Google Scholar 

  25. The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. Eur Respir J 2003, 22:470–477.

  26. Di Stefano A, Capelli A, Lusuardi M, et al.: Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998, 158:1277–1285.

    PubMed  Google Scholar 

  27. Nguyen LT, Lim S, Oates T, Chung KF: Increase in airway neutrophils after oral but not inhaled corticosteroid therapy in mild asthma. Respir Med 2005, 99:200–207.

    Article  PubMed  Google Scholar 

  28. Miranda C, Busacker A, Balzar S, et al.: Distinguishing severe asthma phenotypes: Role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 2004, 113:101–108.

    Article  PubMed  Google Scholar 

  29. Martin RJ, Cicutto LC, Smith HR, et al.: Airways inflammation in nocturnal asthma. Am Rev Respir Dis 1991, 143:351–357.

    PubMed  CAS  Google Scholar 

  30. Pascual RM, Peters SP: Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol 2005, 116:477–486.

    Article  PubMed  Google Scholar 

  31. Fava RA, Olsen NJ, Postlethwaite AE, et al.: Transforming growth factor beta 1 (TGF-1) induced neutrophil recruitment to synovial tissues: implications for TGF—driven synovial inflammation and hyperplasia. J Exp Med 1991, 173:1121–1132.

    Article  PubMed  CAS  Google Scholar 

  32. Cassatella MA: The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995, 16:21–26.

    Article  PubMed  CAS  Google Scholar 

  33. Fava RA, Casey TT, Wilcox J, et al.: Synthesis of transforming growth factor-beta 1 by megakaryocytes and its localization to megakaryocyte and platelet alpha-granules. Blood 1990, 76:1946–1955.

    PubMed  CAS  Google Scholar 

  34. Batra V, Musani AI, Hastie AT, et al.: Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy 2004, 34:437–444.

    Article  PubMed  CAS  Google Scholar 

  35. Chu HW, Trudeau JB, Balzar S, Wenzel SE: Peripheral blood and airway tissue expression of transforming growth factor beta by neutrophils in asthmatic subjects and normal control subjects. J Allergy Clin Immunol 2000, 106:1115–1123.

    Article  PubMed  CAS  Google Scholar 

  36. Rajah R, Nachajon RV, Collins MH, et al.: Elevated levels of the IGF-binding protein protease MMP-1 in asthmatic airway smooth muscle. Am J Respir Cell Mol Biol 1999, 20:199–208.

    PubMed  CAS  Google Scholar 

  37. Stetler-Stevenson WG: Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999, 103:1237–1241.

    Article  PubMed  CAS  Google Scholar 

  38. Shipley JM, Wesselschmidt RL, Kobayashi DK, et al.: Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A 1996, 93:3942–3946.

    Article  PubMed  CAS  Google Scholar 

  39. Shipley JM, Doyle GA, Fliszar CJ, et al.: The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases: role of the fibronectin type II-like repeats. J Biol Chem 1996, 271:4335–4341.

    Article  PubMed  CAS  Google Scholar 

  40. Legrand C, Gilles C, Zahm JM, et al.: Airway epithelial cell migration dynamics: MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999, 146:517–529.

    Article  PubMed  CAS  Google Scholar 

  41. Cataldo D, Munaut C, Noel A, et al.: MMP-2-and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2000, 123:259–267.

    Article  PubMed  CAS  Google Scholar 

  42. Simpson JL, Scott RJ, Boyle MJ, Gibson PG: Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med 2005, 172:559–565.

    Article  PubMed  Google Scholar 

  43. Mattos W, Lim S, Russell R, et al.: Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest 2002, 122:1543–1552.

    Article  PubMed  CAS  Google Scholar 

  44. Vignola AM, Bonanno A, Mirabella A, et al.: Increased levels of elastase and alpha 1-antitrypsin in sputum of asthmatic patients. Am J Respir Crit Care Med 1998, 157:505–511.

    PubMed  CAS  Google Scholar 

  45. Bousquet J, Lacoste JY, Chanez P, et al.: Bronchial elastic fibers in normal subjects and asthmatic patients. Am J Respir Crit Care Med 1996, 153:1648–1654.

    PubMed  CAS  Google Scholar 

  46. Nakamaran H, Yoshimura K, McElvaney NG, Crystal RG: Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest 1992, 89:1478–1484.

    Article  Google Scholar 

  47. Cox G: Glucocorticoid treatment inhibits apoptosis in human neutrophils. J Immunol 1995, 154:4719–4725.

    PubMed  CAS  Google Scholar 

  48. ten Brinke A, Zwinderman AH, Sterk PJ, et al.: “Refractory” eosinophilic airway inflammation in severe asthma: effect of parenteral corticosteroids. Am J Respir Crit Care Med 2004, 170:601–605.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. MacDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDowell, A.L., Peters, S.P. Neutrophils in asthma. Curr Allergy Asthma Rep 7, 464–468 (2007). https://doi.org/10.1007/s11882-007-0071-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-007-0071-6

Keywords

Navigation