Skip to main content

Advertisement

Log in

Exposure, sensitization, and mechanisms of fungus-induced asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Healthy individuals are continuously exposed to fungal biomass, which includes live and dead spores and fungal debris that is entrapped in the airways. In patients with asthma and/or atopy, exposure to fungal biomass might result in agedependent sensitization and asthmatic reactions. Interaction with Toll-like receptors (TLRs) of the innate immune defense (alveolar macrophages and epithelial cells) and proteaseactivated receptors (PARs) determine the effectiveness of elimination of fungal material. The association of sensitization to Alternaria with severe asthma is discussed in relation to the age-dependent sensitization, rate of release of allergens from spores, and activity of its proteases. A model is described concerning the influence of polymorphic genes for airway hyperresponsiveness (AHR) and atopy, showing a cumulating influence on susceptibility for allergen-induced asthma, and explaining that fungus-induced airway obstruction is mainly associated with more severe asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Diamond G, Legarda D, Ryan LK: The innate immune response of the respiratory epithelium. Immunol Rev 2000, 173:27–38.

    Article  PubMed  CAS  Google Scholar 

  2. Kauffman HF, Tomee JFC: Inflammatory cells and airway defense against Aspergillus fumigatus. Immunol Allergy Clin North Am 1999, 18:619–640.

    Article  Google Scholar 

  3. Zureik M, Neukirch C, Leynaert B, et al.: Sensitization to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. BMJ 2002, 325:411–414.

    Article  PubMed  Google Scholar 

  4. Burge HA: An update on pollen and fungal spore aerobiology. J Allergy Clin Immunol 2002, 110:544–552.

    Article  PubMed  Google Scholar 

  5. Bush RK, Portnoy JM: The role and abatement of fungal allergens in allergic diseases. J Allergy Clin Immunol 2001, 107:S430-S440.

    Article  PubMed  CAS  Google Scholar 

  6. Kauffman HF, van der Heide S, Beaumont F, et al.: The allergenic and antigenic properties of spore extracts of Aspergillus fumigatus: a comparative study of spore extracts with mycelium and culture filtrate extracts. J Allergy Clin Immunol 1984, 73:567–573.

    Article  PubMed  CAS  Google Scholar 

  7. Sporik RB, Arruda LK, Woodfolk J, et al.: Environmental exposure to Aspergillus fumigatus allergen (Asp f I). Clin Exp Allergy 1993, 23:326–331.

    Article  PubMed  CAS  Google Scholar 

  8. Mitakakis TZ, Barnes C, Tovey ER: Spore germination increases allergen release from Alternaria. J Allergy Clin Immunol 2001, 107:388–390.

    Article  PubMed  CAS  Google Scholar 

  9. Takatori K, Lee H-J, Ohta T, Shida T: Composition of the house dust mycoflora in Japanese houses. In Health Implications of Fungi in Indoor Environments. Edited by Samson RA, Flannigan B, Flannigan ME, Verhoef AP. Amsterdam: Elsevier, 1994:93–101.

    Google Scholar 

  10. van der Heide S, van Aalderen WM, Kauffman HF, et al.: Clinical effects of air cleaners in homes of asthmatic children sensitized to pet allergens. J Allergy Clin Immunol 1999, 104:447–451.

    Article  PubMed  Google Scholar 

  11. Douwes J, van der Sluis B, Doekes G, et al.: Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol 1999, 103:494–500. This article describes the measurement of fungal antigens specific for certain species (Penicillium and Aspergillus). This method makes quantification of fungal antigens possible in dust samples trapped in suction devises such as vacuum cleaners and air cleaners (see also van der Heide et al. [10]).

    Article  PubMed  CAS  Google Scholar 

  12. Wilken-Jensen K, Gravesen S: Atlas of Moulds in Europe Causing Respiratory Allergy. Copenhagen: ASK Publishing; 1984:7–110.

    Google Scholar 

  13. Horner WE, Helbling A, Salvaggio JE, Lehrer SB: Fungal allergens. Clin Micribiol Rev 1995, 8:161–179.

    CAS  Google Scholar 

  14. Beaumont F, Kauffman HF, de Monchy JG, et al.: Volumetric aerobiological survey of conidial fungi in the North-East Netherlands. II. Comparison of aerobiological data and skin tests with mould extracts in an asthmatic population. Allergy 1985, 40:181–186. This is one of the few articles that describes sensitization to fungi and compares this with corresponding fungal spore numbers found in the same environment (see also Gautrin et al. [21]).

    Article  PubMed  CAS  Google Scholar 

  15. Nikkels AH, Terstegge P, Spieksma FThM: Ten types of microscopically identifiable airborne fungal spores at Leiden, The Netherlands. Aerobiologia 1996, 12:107–112.

    Google Scholar 

  16. Shelton BG, Kirkland KH, Flanders WD, Morris GK: Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 2002, 68:1743–1753.

    Article  PubMed  CAS  Google Scholar 

  17. Dharmage S, Bailey M, Raven J, et al.: Prevalence and residential determinants of fungi within homes in Melbourne, Australia. Clin Exp Allergy 1999, 29:1481–1489.

    Article  PubMed  CAS  Google Scholar 

  18. Beguin H, Nolard N: Mold biodiversity in homes I: Air and surface analysis of 130 dwellings. Aerobiologia 1994, 10:157–166.

    Article  Google Scholar 

  19. Howard WA: Incidence and clinical characteristics of mould allergy. In Mould Allergy. Edited by Al-Doory Y, Domson JF. Philadelphia: Lea and Febiger; 1984:147–156.

    Google Scholar 

  20. Heide Svd, Kauffman HF, De Vries K: Cultivation of fungi in synthetic and semi-synthetic liquid medium. II. Immunochemical properties of the antigenic and allergenic extracts. Allergy 1985, 40:592–598.

    Article  PubMed  Google Scholar 

  21. Gautrin D, Vandenplas O, Dewitte J-D, et al.: Allergenic exposure, IgE-mediated sensitization, and related symptoms in lawn cutters. J Allergy Clin Immunol 1994, 93:437–445. See annotation for Beaumont et al. [14].

    Article  PubMed  CAS  Google Scholar 

  22. D’Amato G, Spieksma FThM: Aerobiologic and clinical aspects of mold allergy in Europe. Allergy 1995, 50:870–877.

    Article  PubMed  CAS  Google Scholar 

  23. Zock JP, Jarvis D, Luczynska C, et al.: Housing characteristics, reported mold exposure, and asthma in the European Community Respiratory Health Survey. J Allergy Clin Immunol 2002, 110:285–292.

    Article  PubMed  Google Scholar 

  24. Salvaggio JE, Aukrust L: Mold-induced asthma. J Allergy Clin Immunol 1981, 68:327–346.

    Article  PubMed  CAS  Google Scholar 

  25. Niemeyer NR, de Monchy JGR: Age-dependency of sensitization to aero-allergens in asthmatics. Allergy 1992, 47:431–435.

    Article  Google Scholar 

  26. Koivikko A, Viander M, Lanner A: Use of the extended Phadebas RAST panel in the diagnosis of mould allergy in asthmatic children. Allergy 1991, 46:85–91.

    Article  PubMed  CAS  Google Scholar 

  27. Kauffman HF, Tomee JF, van der Werf TS, et al.: Review of fungus-induced asthmatic reactions. Am J Respir Crit Care Med 1995, 151:2109–2115.

    PubMed  CAS  Google Scholar 

  28. Nolles G, Hoekstra MO, Schouten JP, et al.: Prevalence of immunoglobulin E for fungi in atopic children. Clin Exp Allergy 2001, 31:1564–1570. An age-dependent sensitization to four fungi is described in a group of children ranging in ages up to 14 years, showing a maximum of sensitization for all fungi at 7 to 8 years. Thereafter, sensitization to fungi shows a significantly lower prevalence at older ages.

    Article  PubMed  CAS  Google Scholar 

  29. Ezeamuzie CI, Al Ali S, Khan M, et al.: IgE-mediated sensitization to mould allergens among patients with allergic respiratory diseases in a desert environment. Int Arch Allergy Immunol 2000, 121:300–307.

    Article  PubMed  CAS  Google Scholar 

  30. Dharmage S, Bailey M, Raven J, et al.: Current indoor allergen levels of fungi and cats, but not house dust mites, influence allergy and asthma in adults with high dust mite exposure. Am J Respir Crit Care Med 2001, 164:65–71.

    PubMed  CAS  Google Scholar 

  31. Tariq SM, Matthews SM, Stevens M, Hakim EA: Sensitization to Alternaria and Cladosporium by the age of 4 years. Clin Exp Allergy 1996, 26:794–798.

    Article  PubMed  CAS  Google Scholar 

  32. Halonen M, Stern DA, Wright AL, et al.: Alternaria as a major allergen for asthma in children raised in a desert environment. Am J Respir Crit Care Med 1997, 155:1356–1361.

    PubMed  CAS  Google Scholar 

  33. Neukirch C, Henry C, Leynaert B, et al.: Is sensitization to Alternaria alternata a risk factor for severe asthma? A population-based study. J Allergy Clin Immunol 1999, 103:709–711.

    Article  PubMed  CAS  Google Scholar 

  34. Black PN, Udi AA, Brodie SM: Sensitivity to fungal allergens is a risk factor for life-threatening asthma. Allergy 2000, 55:501–504.

    Article  PubMed  CAS  Google Scholar 

  35. Targonski PV, Persky VW, Ramekrishnan V: Effect of environmental molds on risk of death from asthma during the pollen season. J Allergy Clin Immunol 1995, 95:955–961.

    Article  PubMed  CAS  Google Scholar 

  36. Dales RE, Cakmak S, Burnett RT, et al.: Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. Am J Respir Crit Care Med 2000, 162:2087–2090.

    PubMed  CAS  Google Scholar 

  37. O’Hollaren MT, Yunginger JW, Offord KP, et al.: Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 1991, 324:359–363.

    Article  PubMed  CAS  Google Scholar 

  38. Downs SH, Mitakakis TZ, Marks GB, et al.: Clinical importance of Alternaria exposure in children. Am J Respir Crit Care Med 2001, 164:455–459.

    PubMed  CAS  Google Scholar 

  39. Burch M, Levetin E: Effects of meteorological conditions on spore plumes. Int J Biometeorol 2002, 46:107–117.

    Article  PubMed  CAS  Google Scholar 

  40. Medzhitov R, Janeway C Jr: The Toll receptor family and microbial recognition. Trends Microbiol 2000, 8:452–456.

    Article  PubMed  CAS  Google Scholar 

  41. Lemaitre B, Nicolas E, Michaut L, et al.: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86:973–983.

    Article  PubMed  CAS  Google Scholar 

  42. Netea MG, Van Der Graaf CA, Vonk AG, et al.: The role of tolllike receptor (TLR) 2 and TLR4 in the host defense against disseminated Candidiasis. J Infect Dis 2002, 185:1483–1489. This article describes for the first time the role of TLRs in a mouse model against disseminated candidiasis and in vitro. The role of TLRs in the killing efficiency and cytokine production by mouse macrophages and neutrophils incubated with C. albicans is discussed.

    Article  PubMed  CAS  Google Scholar 

  43. Morre SA, Murillo LS, Spaargaren J, et al.: Role of the toll-like receptor 4 Asp299Gly polymorphism in susceptibility to Candida albicans infection. J Infect Dis 2002, 186:1377–1379.

    Article  PubMed  Google Scholar 

  44. Mambula SS, Sau K, Henneke P, et al.: Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002, 277:39320–39326. The role of TLRs in the defense against both conidia and hyphae of Aspergillus fumigatus is studied in knock-out mouse models, showing that for signaling and defense, TLR2 is required.

    Article  PubMed  CAS  Google Scholar 

  45. Jones BW, Heldwein KA, Means TK, et al.: Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis 2001, 60(Suppl3):iii6-iii12.

    PubMed  CAS  Google Scholar 

  46. Kauffman HF: Immunopathogenesis of allergic bronchopulmonary aspergillosis and airway remodeling. Front Biosci 2003, 8:E190-E196.

    Article  PubMed  CAS  Google Scholar 

  47. Asokananthan N, Graham PT, Fink J, et al.: Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002, 168:3577–3585.

    PubMed  CAS  Google Scholar 

  48. Kauffman HF, Tomee JF, van de Riet MA, et al.: Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 2000, 105:1185–1193.

    Article  PubMed  CAS  Google Scholar 

  49. Thompson PJ: Unique role of allergens and the epithelium in asthma. Clin Exp Allergy 1998, 28:110–116.

    Article  PubMed  CAS  Google Scholar 

  50. Kauffman HF: Interaction of environmental allergens with airway epithelium as a key component of asthma. Curr Allergy Asthma Rep 2003, 3:101–108.

    Article  PubMed  Google Scholar 

  51. Holgate ST, Davies DE, Lackie PM, et al.: Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000, 105:193–204.

    Article  PubMed  CAS  Google Scholar 

  52. Kurup VP, Xia JQ, Shen HD, et al.: Alkaline serine proteinase from Aspergillus fumigatus has synergistic effects on Asp-f-2-induced immune response in mice. Int Arch Allergy Immunol 2002, 129:129–137.

    Article  PubMed  CAS  Google Scholar 

  53. Monod M, Jaton-Ogay K, Reichard U: Aspergillus fumigatussecreted proteases as antigenic molecules and virulence factors. In Aspergillus fumigatus: Biology, Clinical Aspects and Molecular Approaches to Pathogenicity, edn 2. Edited by Brakhage AA, Jahn B, Schmidt A. Wuppertal, Germany: Axel Schmidt; 1999:182–192.

    Google Scholar 

  54. Tomee JF, Wierenga ATJ, Hiemstra PS, Kauffman HF: Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis 1997, 176:300–303.

    PubMed  CAS  Google Scholar 

  55. Murray CS, Woodcock A, Custovic A: The role of indoor allergen exposure in the development of sensitization and asthma. Curr Opin Allergy Clin Immunol 2001, 1:407–412.

    PubMed  CAS  Google Scholar 

  56. Pearce N, Pekkanen J, Beasley R: How much asthma is really attributable to atopy? Thorax 1999, 54:268–272.

    Article  PubMed  CAS  Google Scholar 

  57. Sundeep SS, Babu KS, Holgate ST: Is asthma really due to a polarized T cell response toward a helper T cell type 2 phenotype? Am J Respir Crit Care Med 2001, 164:1333–1338.

    Google Scholar 

  58. Becky Kelly EA, Busse WW, Jarjour NN: A comparison of the airway response to segmental antigen bronchial provocation in atopic asthma and allergic rhinitis. J Allergy Clin Immunol 2003, 111:79–86. This article and Lopuhaa et al. [59] indicate that asthmatic responses to local allergen challenge between patients with either asthma or rhinitis are similar with respect to changes in lung function and parameters of inflammation. The major difference was found for AHR, which was significantly more severe in patients with asthma.

    Article  CAS  Google Scholar 

  59. Lopuhaa CE, Out TA, Jansen HM, et al.: Allergen induced bronchial inflammation in house dust mite allergic patients with and without asthma. Clin Exp Allergy 2003, In press. This article, in conjunction with Becky Kelly et al. [58], shows that patients with asthmatic reactions show similar bronchial obstructive reactions and changes in inflammatory parameters, although a more severe AHR is the major characteristic difference between both groups. Additionally, it was also found that numbers of neutrophils, levels of myeloperoxidase in sputum samples, and IL-8 levels were significantly higher in patients with asthma.

  60. Laitinen LA, Heino M, Laitinen A, et al.: Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 1985, 131:599–606.

    PubMed  CAS  Google Scholar 

  61. Holgate ST: Inflammatory and structural changes in the airways of patients with asthma. Respir Med 2000, 94(SupplD):S3-S6.

    PubMed  Google Scholar 

  62. Montefort S, Roberts JA, Beasley R, et al.: The site of disruption of the bronchial epithelium in asthmatic and non-asthmatic subjects. Thorax 1992, 47:499–503.

    Article  PubMed  CAS  Google Scholar 

  63. Tohda Y, Kubo H, Ito M, et al.: Histopathology of the airway epithelium in an experimental dual-phase model of bronchial asthma. Clin Exp Allergy 2001, 31:135–143.

    Article  PubMed  CAS  Google Scholar 

  64. Polosa R, Prosperini G, Tomaselli V, et al.: Expression of c-erbB receptors and ligands in human nasal epithelium. J Allergy Clin Immunol 2000, 106:1124–1131.

    Article  PubMed  CAS  Google Scholar 

  65. Puddicombe SM, Polosa R, Richter A, et al.: Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 2000, 14:1362–1374.

    Article  PubMed  CAS  Google Scholar 

  66. Davies DE: The bronchial epithelium in chronic and severe asthma. Curr Allergy Asthma Rep 2001, 1:127–133.

    Article  PubMed  CAS  Google Scholar 

  67. Holgate ST, Lackie P, Wilson S, et al.: Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am J Respir Crit Care Med 2000, 162:S113-S117.

    PubMed  CAS  Google Scholar 

  68. Koppelman GH, Stine OC, Xu J, et al.: Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 2002, 109:498–506.

    Article  PubMed  CAS  Google Scholar 

  69. Leung TF, Tang NL, Chan IH, et al.: A polymorphism in the coding region of interleukin-13 gene is associated with atopy but not asthma in Chinese children. Clin Exp Allergy 2001, 31:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  70. Kruse S, Kuehr J, Moseler M, et al.: Polymorphisms in the IL-18 gene are associated with specific sensitization to common allergens and allergic rhinitis. J Allergy Clin Immunol 2003, 111:117–122.

    Article  PubMed  CAS  Google Scholar 

  71. Howard TD, Postma DS, Koppelman GA, et al.: Fine mapping of an IgE-controlling gene on chromosome 2q: analysis of CTLA4 and CD28. J Allergy Clin Immunol 2002, 110:743–751.

    Article  PubMed  CAS  Google Scholar 

  72. Howard TD, Wiesch DG, Koppelman GH, et al.: Genetics of allergy and bronchial hyperresponsiveness. Clin Exp Allergy 1999, 29(Suppl2):86–89.

    PubMed  Google Scholar 

  73. Palmer LJ, Burton PR, Faux JA, et al.: Independent inheritance of serum immunoglobulin E concentrations and airway responsiveness. Am J Respir Crit Care Med 2000, 161:1836–1843.

    PubMed  CAS  Google Scholar 

  74. Van Eerdewegh P, Little RD, Dupuis J, et al.: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418:426–430. This is the first article describing the role of a disintegrin and metalloproteinase (ADAM 33) that is strongly associated with AHR but not with atopy. Activation of these surface-bound metalloproteinases might be important in the release of growth factors underlying the remodeling process that is associated with AHR.

    Article  PubMed  CAS  Google Scholar 

  75. Holgate ST, Davies DE, Murphy G, et al.: ADAM 33: just another asthma gene or a breakthrough in understanding the origins of bronchial hyperresponsiveness? Thorax 2003, 58:466–469.

    Article  PubMed  CAS  Google Scholar 

  76. Howard TD, Koppelman GH, Xu J, et al.: Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet 2002, 70:230–236.

    Article  PubMed  CAS  Google Scholar 

  77. Knutsen AP, Bellone C, Kauffman HF: Immunopathogenesis of allergic bronchopulmonary aspergillosis in cystic fibrosis. J Cystic Fibrosis 2002, 1:76–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffman, H.F., van der Heide, S. Exposure, sensitization, and mechanisms of fungus-induced asthma. Curr Allergy Asthma Rep 3, 430–437 (2003). https://doi.org/10.1007/s11882-003-0080-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-003-0080-z

Keywords

Navigation