Skip to main content

Advertisement

Log in

Impairment of Monocyte-derived Dendritic Cells in Idiopathic Pulmonary Arterial Hypertension

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background and Aim

With the development of immunology, the role of immune inflammation in idiopathic pulmonary arterial hypertension (IPAH) has attracted interest. Recently, it was discovered that dendritic cells, which are key players in immune inflammation, are implicated in the pathogenesis of IPAH. To elucidate the role of dendritic cells in human IPAH, we compared the changes in the number and immunological function of monocyte-derived dendritic cells (MoDCs) from the peripheral blood of patients with IPAH and healthy controls.

Methods

The numbers of MoDC subsets (including plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells (mDCs)) in circulating peripheral blood mononuclear cells (PBMCs) was analyzed by flow cytometry, and the concentrations of interleukin (IL)-12, IL-10, and tumor necrosis factor-alpha were measured by enzyme-linked immunosorbent serologic assay kits. The morphology, phenotypic expression, and the ability to stimulate T cell proliferation of MoDCs, cultured from PBMCs in vitro with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, was analyzed by microscopy, flow cytometry, and MTT assay.

Results

The results of the study are as follows: (1) The number of circulating mDCs was lower in IPAH patients than in controls (0.07 ± 0.01% to 0.14 ± 0.02%; p < 0.05). (2) IL-12 levels were higher in IPAH patients than in controls (p < 0.05). (3) MoDCs showed higher expression of CD1a (53.34 ± 7.43% to 19.29 ± 7.37%; p < 0.05), and lower expression of costimulatory molecule CD86 (64.54 ± 5.93% to 87.04 ± 4.82%; p < 0.05), and less ability to simulate T cell proliferation (when the ratio is 1:10) compared to the controls.

Conclusions

The study shows that it is possible to obtain typical DCs by culturing PBMCs from patients with IPAH with GM-CSF and IL-4, and it demonstrates that patients with IPAH have a significant change in the number of mDC and a marked immune deficiency of MoDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dorfmuller P, et al. Inflammation in pulmonary arterial hypertension. Eur Respir J. 2003;22(2):358–63.

    Article  CAS  PubMed  Google Scholar 

  2. Nicolls MR, et al. Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J. 2005;26(6):1110–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ogawa A, et al. Prednisolone inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. Circulation. 2005;112(12):1806–12.

    Article  CAS  PubMed  Google Scholar 

  4. Bellotto F, et al. Effective immunosuppressive therapy in a patient with primary pulmonary hypertension. Thorax. 1999;54(4):372–4.

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez O, et al. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest. 2006;130(1):182–9.

    Article  CAS  PubMed  Google Scholar 

  6. Perros F, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J. 2007;29(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  7. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  8. Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest. 2004;114(9):1209–17.

    CAS  PubMed  Google Scholar 

  9. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2(3):151–61.

    Article  CAS  PubMed  Google Scholar 

  10. Pietra GG, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol. 2004;43(12_Suppl_S):25S–32.

    Article  PubMed  Google Scholar 

  11. Fartoukh M, et al. Chemokine macrophage inflammatory protein-1alpha mRNA expression in lung biopsy specimens of primary pulmonary hypertension. Chest. 1998;114(1):50S–51S.

    Article  CAS  PubMed  Google Scholar 

  12. Balabanian K, et al. CX3C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(10):1419–25.

    Article  PubMed  Google Scholar 

  13. Gugl A, et al. Two polymorphisms in the fractalkine receptor CX3CR1 are not associated with peripheral arterial disease. Atherosclerosis. 2003;166(2):339–43.

    Article  CAS  PubMed  Google Scholar 

  14. Odobasic D, et al. CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int. 2005;68(2):584–94.

    Article  CAS  PubMed  Google Scholar 

  15. Pentcheva-Hoang T, et al. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity. 2004;21(3):401–13.

    Article  CAS  PubMed  Google Scholar 

  16. Porcelli SA, et al. The CD1 family of lipid antigen-presenting molecules. Immunol Today. 1998;19(8):362–8.

    Article  CAS  PubMed  Google Scholar 

  17. Karmochkine M, et al. High prevalence of antiphospholipid antibodies in precapillary pulmonary hypertension. J Rheumatol. 1996;23(2):286–90.

    CAS  PubMed  Google Scholar 

  18. Negi VS, et al. Antiendothelial cell antibodies in scleroderma correlate with severe digital ischemia and pulmonary arterial hypertension. J Rheumatol. 1998;25(3):462–6.

    CAS  PubMed  Google Scholar 

  19. Tamby MC, et al. Antibodies to fibroblasts in idiopathic and scleroderma-associated pulmonary hypertension. Eur Respir J. 2006;28(4):799–807.

    Article  CAS  PubMed  Google Scholar 

  20. Rich SD, Ayres SM, et al. Primary pulmonary hypertension:a national prospective study. Ann Intern Med. 1987;107:216–23.

    CAS  PubMed  Google Scholar 

  21. Penna G, et al. Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum Immunol. 2002;63(12):1164–71.

    Article  CAS  PubMed  Google Scholar 

  22. Gill MA, et al. Blood dendritic cells and DC-poietins in systemic lupus erythematosus. Hum Immunol. 2002;63(12):1172–80.

    Article  CAS  PubMed  Google Scholar 

  23. Pacanowski J, et al. Reduced blood CD123+ (lymphoid) and CD11c + (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98(10):3016–21.

    Article  CAS  PubMed  Google Scholar 

  24. Duan X-Z, et al. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroenterol Hepatol. 2005;20(2):234–42.

    Article  PubMed  Google Scholar 

  25. Vuckovic S, et al. Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol. 2007;123(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yilmaz A, et al. Decrease in circulating myeloid dendritic cell precursors in coronary artery disease. J Am Coll Cardiol. 2006;48(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  27. Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol. 2007;124(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  28. Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28(10):429–36.

    Article  CAS  PubMed  Google Scholar 

  29. Bowers R, et al. Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med. 2004;169(6):764–9.

    Article  PubMed  Google Scholar 

  30. Wang X-X, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol. 2007;49(14):1566–71.

    Article  CAS  PubMed  Google Scholar 

  31. Duan XZ, Zhuang H, Wang M, Li HW, Liu JC, Wang FS. Decreased numbers and impaired function of circulating dendritic cell subsets in patients with chronic hepatitis B infection (R2). J Gastroenterol Hepatol 2005;20:234–42.

    Article  PubMed  Google Scholar 

  32. Ulsenheimer A, Gerlach JT, Jung MC, et al. Plasmacytoid dendritic cells in acute and chronic hepatitis C virus infection. Hepatology 2005;41:643–51.

    Article  PubMed  Google Scholar 

  33. Uehira K, Amakawa R, Ito T, et al. Dendritic cells are decreased in blood and accumulated in granuloma in tuberculosis. Clin Immunol 2002;105:296–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Junzhu Chen for advice and constructive discussion. We are also grateful to the patients for participating in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhu.

Additional information

This work was supported by the project of the Natural Science Foundation of China (306708886/C03030201), Beijing; Science and Technology project of Zhejiang Province (2008C23044), and Medical Science and Technology project of Zhejiang Province (2006A048, 2007B054), Hangzhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yan, H., Zhu, W. et al. Impairment of Monocyte-derived Dendritic Cells in Idiopathic Pulmonary Arterial Hypertension. J Clin Immunol 29, 705–713 (2009). https://doi.org/10.1007/s10875-009-9322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9322-8

Keywords

Navigation