Skip to main content

Advertisement

Log in

The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Proteolytic remodeling of the extracellular matrix is an important component of disease progression in many chronic disease states and is the initiating event in the formation of the tumor microenvironment in cancer. It is the balance of extracellular matrix degrading enzymes, the matrix metalloproteinases (MMPs) and their endogenous inhibitors that determine the extent of tissue remodeling. Unchecked MMP activity can result in significant tissue damage, facilitate disease progression and is associated with host responses to pathologic injury such as angiogenesis and inflammation. The tissue inhibitors of metalloproteinases (TIMPs) have been shown to regulate MMP activity. However, recent findings demonstrate that the tissue inhibitor of metalloproteinases-2 (TIMP-2) inhibits the mitogenic response of human microvascular endothelial cells to growth factors, such as VEGF-A and FGF-2 in vitro and angiogenesis in vivo. The mechanism of this effect is independent of metalloproteinase inhibition. Our lab is the first to demonstrate a cell-surface signaling receptor for a member of the TIMP family and suggest that TIMP-2 functions to regulate cellular responses to growth factors. These new findings are discussed in terms of a model of TIMP-2 regulation of cellular functions in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman, J., & Hanahan, D. (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symposia, 22, 339–347.

    PubMed  CAS  Google Scholar 

  3. Heissig, B., Hattori, K., Friedrich, M., Rafii, S., & Werb, Z. (2003). Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Current Opinion in Hematology, 10, 136–141.

    Article  PubMed  CAS  Google Scholar 

  4. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  5. Coussens, L. M., & Werb, Z. (2001). Inflammation and cancer. Nature, 420, 860–867.

    Article  Google Scholar 

  6. Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell & Developmental Biology, 17, 463–516.

    Article  CAS  Google Scholar 

  7. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2, 161–174.

    Article  PubMed  CAS  Google Scholar 

  8. Lambert, E., Dasse, E., Haye, B., & Petitfrere, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology Hematology, 49, 187–198.

    Article  Google Scholar 

  9. Crocker, S. J., Pagenstecher, A., & Campbell, I. L. (2004). The TIMPs tango with MMPs and more in the central nervous system. Journal of Neuroscience Research, 75, 1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochimica et Biophysica Acta, 1477, 267–283.

    PubMed  CAS  Google Scholar 

  11. Zhang, J. S., Bai, S., Tanase, C., Nagase, H., & Sarras, M. P. (2003). The expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for normal development of zebrafish embryos. Development Genes and Evolution, 213, 382–389.

    Article  PubMed  CAS  Google Scholar 

  12. Gill, S. E., Pape, M. C., Khokha, R., Watson, A. J., & Leco, K. J. (2003). A null mutation for tissue inhibitor of metalloproteinases-3 (Timp-3) impairs murine bronchiole branching morphogenesis. Developmental Biology, 261, 313–323.

    Article  PubMed  CAS  Google Scholar 

  13. Fata, J. E., Leco, K. J., Voura, E. B., Yu, H. Y., Waterhouse, P., Murphy, G., et al. (2001). Accelerated apoptosis in the Timp-3-deficient mammary gland. Journal of Clinical Investigation, 108, 831–841.

    Article  PubMed  CAS  Google Scholar 

  14. Godenschwege, T. A., Pohar, N., Buchner, S., & Buchner, E. (2000). Inflated wings, tissue autolysis and early death in tissue inhibitor of metalloproteinases mutants of Drosophila. European Journal of Cell Biology, 79, 495–501.

    Article  PubMed  CAS  Google Scholar 

  15. Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. Journal of Clinical Investigation, 103, 1237–1241.

    PubMed  CAS  Google Scholar 

  16. Derry, J. M., & Barnard, P. J. (1992). Physical linkage of the A-raf-1, properdin, synapsin I, and TIMP genes on the human and mouse X chromosomes. Genomics, 12, 632–638.

    Article  PubMed  CAS  Google Scholar 

  17. Dunham, I., Shimizu, N., Roe, B. A., Chissoe, S., Hunt, A. R., Collins, J. E., et al. (1999). The DNA sequence of human chromosome 22.[see comment][erratum appears in Nature 2000 Apr 20;404(6780):904]. Nature, 402, 489–495.

    Article  PubMed  CAS  Google Scholar 

  18. Pohar, N., Godenschwege, T. A., & Buchner, E. (1999). Invertebrate tissue inhibitor of metalloproteinase: Structure and nested gene organization within the synapsin locus is conserved from Drosophila to human. Genomics, 57, 293–296.

    Article  PubMed  CAS  Google Scholar 

  19. Caterina, J. J., Yamada, S., Caterina, N. C. M., Longenecker, G., Holmback, K., Shi, J., et al. (2000). Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. Journal of Biological Chemistry, 275, 26416–26422.

    Article  PubMed  CAS  Google Scholar 

  20. Jaworski, D. M., Beem-Miller, M., Lluri, G., & Barrantes-Reynolds, R. (2007). Potential regulatory relationship between the nested gene DDC8 and its host gene tissue inhibitor of metalloproteinase-2. Physiological Genomics, 28, 168–178.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, Z., Juttermann, R., & Soloway, P. D. (2000). TIMP-2 is required for efficient activation of proMMP-2 in vivo. Journal of Biological Chemistry, 275, 26411–26415.

    Article  PubMed  CAS  Google Scholar 

  22. Docherty, A. J., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J., et al. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318, 66–69.

    Article  PubMed  CAS  Google Scholar 

  23. Gasson, J. C., Bersch, N., & Golde, D. W. (1985). Characterization of purified human erythroid-potentiating activity. Progress in Clinical & Biological Research, 184, 95–104.

    CAS  Google Scholar 

  24. Stetler-Stevenson, W. G., Bersch, N., & Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Letters, 296, 231–234.

    Article  PubMed  CAS  Google Scholar 

  25. Stricklin, G. P., & Welgus, H. G. (1986). Physiological relevance of erythroid-potentiating activity of TIMP. Nature, 321, 628.

    Article  PubMed  CAS  Google Scholar 

  26. Hayakawa, T., Yamashita, K., Tanzawa, K., Uchijima, E., & Iwata, K. (1992). Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Letters, 298, 29–32.

    Article  PubMed  CAS  Google Scholar 

  27. Guedez, L., Mansoor, A., Birkedal-Hansen, B., Lim, M. S., Fukushima, P., Venzon, D., et al. (2001). Tissue inhibitor of metalloproteinases 1 regulation of interleukin-10 in B-cell differentiation and lymphomagenesis. Blood, 97, 1796–1802.

    Article  PubMed  CAS  Google Scholar 

  28. Guedez, L., Martinez, A., Zhao, S., Vivero, A., Pittaluga, S., Stetler-Stevenson, M., et al. (2005). Tissue inhibitor of metalloproteinase 1 (TIMP-1) promotes plasmablastic differentiation of a Burkitt lymphoma cell line: Implications in the pathogenesis of plasmacytic/plasmablastic tumors. Blood, 105, 1660–1668.

    Article  PubMed  CAS  Google Scholar 

  29. Guedez, L., McMarlin, A. J., Kingma, D. W., Bennett, T. A., Stetler-Stevenson, M., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt’s lymphoma via divergent effects on tumor growth and angiogenesis. American Journal of Pathology, 158, 1207–1215.

    PubMed  CAS  Google Scholar 

  30. Guedez, L., Stetler-Stevenson, W. G., Wolff, L., Wang, J., Fukushima, P., Mansoor, A., et al. (1998). In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. Journal of Clinical Investigation, 102, 2002–2010.

    PubMed  CAS  Google Scholar 

  31. Jung, K. K., Liu, X. W., Chirco, R., Fridman, R., & Kim, H. R. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO Journal, 25, 3934–3942.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, X. W., Bernardo, M. M., Fridman, R., & Kim, H. R. (2003). Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells against intrinsic apoptotic cell death via the focal adhesion kinase/phosphatidylinositol 3-kinase and MAPK signaling pathway. Journal of Biological Chemistry, 278, 40364–40372.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, X. W., Taube, M. E., Jung, K. K., Dong, Z., Lee, Y. J., Roshy, S., et al. (2005). Tissue inhibitor of metalloproteinase-1 protects human breast epithelial cells from extrinsic cell death: A potential oncogenic activity of tissue inhibitor of metalloproteinase-1. Cancer Research, 65, 898–906.

    PubMed  CAS  Google Scholar 

  34. Taube, M. E., Liu, X. W., Fridman, R., & Kim, H. R. (2006). TIMP-1 regulation of cell cycle in human breast epithelial cells via stabilization of p27(KIP1) protein. Oncogene, 25, 3041–3048.

    Article  PubMed  CAS  Google Scholar 

  35. Mohammed, F. F., Smookler, D. S., Taylor, S. E. M., Fingleton, B., Kassiri, Z., Sanchez, O. H., et al. (2004). Abnormal TNF activity in Timp3(−/−) mice leads to chronic hepatic inflammation and failure of liver regeneration. Nature Genetics, 36, 969–977.

    Article  PubMed  CAS  Google Scholar 

  36. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): Inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9, 407–415.

    Article  PubMed  CAS  Google Scholar 

  37. Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., et al. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Research, 61, 2365–2370.

    PubMed  CAS  Google Scholar 

  38. Celiker, M. Y., Wang, M., Atsidaftos, E., Liu, X., Liu, Y. E., Jiang, Y., et al. (2001). Inhibition of Wilms’ tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene, 20, 4337–4343.

    Article  PubMed  CAS  Google Scholar 

  39. Fernandez, C. A., & Moses, M. A. (2006). Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4. Biochemical and Biophysical Research Communications, 345, 523–529.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, W. H., Yu, S., Meng, Q., Brew, K., & Woessner Jr., J. F. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. Journal of Biological Chemistry, 275, 31226–31232.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson, M. D., Kim, H. R., Chesler, L., Tsao-Wu, G., Bouck, N., & Polverini, P. J. (1994). Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. Journal of Cellular Physiology, 160, 194–202.

    Article  PubMed  CAS  Google Scholar 

  42. Anand-Apte, B., Pepper, M. S., Voest, E., Montesano, R., Olsen, B., Murphy, G., et al. (1997). Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Investigative Ophthalmology & Visual Science, 38, 817–823.

    CAS  Google Scholar 

  43. Baker, A. H., Zaltsman, A. B., George, S. J., & Newby, A. C. (1998). Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. Journal of Clinical Investigation, 101, 1478–1487.

    PubMed  CAS  Google Scholar 

  44. Brown, P. D. (1998). Matrix metalloproteinase inhibitors. Angiogenesis, 1, 142–154.

    Article  PubMed  CAS  Google Scholar 

  45. Moses, M. A., Sudhalter, J., & Langer, R. (1990). Identification of an inhibitor of neovascularization from cartilage. Science, 248, 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  46. Takigawa, M., Nishida, Y., Suzuki, F., Kishi, J., Yamashita, K., & Hayakawa, T. (1990). Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochemical & Biophysical Research Communications, 171, 1264–1271.

    Article  CAS  Google Scholar 

  47. Murphy, A. N., Unsworth, E. J., & Stetler-Stevenson, W. G. (1993). Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. Journal of Cellular Physiology, 157, 351–358.

    Article  PubMed  CAS  Google Scholar 

  48. Wingfield, P. T., Sax, J. K., Stahl, S. J., Kaufman, J., Palmer, I., Chung, V., et al. (1999). Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. Journal of Biological Chemistry, 274, 21362–21368.

    Article  PubMed  CAS  Google Scholar 

  49. Hoegy, S. E., Oh, H. R., Corcoran, M. L., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. Journal of Biological Chemistry, 276, 3203–3214.

    Article  PubMed  CAS  Google Scholar 

  50. Itoh, Y., Ito, A., Iwata, K., Tanzawa, K., Mori, Y., & Nagase, H. (1998). Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase A) activated on the cell surface. Journal of Biological Chemistry, 273, 24360–24367.

    Article  PubMed  CAS  Google Scholar 

  51. Bernardo, M. M., & Fridman, R. (2003). TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochemical Journal, 374, 739–745.

    Article  PubMed  CAS  Google Scholar 

  52. Fernandez, C. A., Butterfield, C., Jackson, G., & Moses, M. A. (2003). Structural and functional uncoupling of the enzymatic and angiogenic inhibitory activities of tissue inhibitor of metalloproteinase-2 (TIMP-2): Loop 6 is a novel angiogenesis inhibitor. Journal of Biological Chemistry, 278, 40989–40995.

    Article  PubMed  CAS  Google Scholar 

  53. Seo, D. W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., et al. (2003). TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell, 114, 171–180.

    Article  PubMed  CAS  Google Scholar 

  54. Seo, D. W., Li, H., Qu, C. K., Kim, Y. S., Diaz, T., Wei, B., et al. (2006). Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. Journal of Biological Chemistry, 281, 3711–3721.

    Article  PubMed  CAS  Google Scholar 

  55. Oh, J., Seo, D. W., Diaz, T., Wei, B., Ward, Y., Ray, J. M., et al. (2004). Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Research, 64, 9062–9069.

    Article  PubMed  CAS  Google Scholar 

  56. Oh, J., Diaz, T., Wei, B., Chang, H., Noda, M., & Stetler-Stevenson, W. G. (2006). TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene, 25, 4230–4234.

    Article  PubMed  CAS  Google Scholar 

  57. Nuttall, R. K., Sampieri, C. L., Pennington, C. J., Gill, S. E., Schultz, G. A., & Edwards, D. R. (2004). Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Letters, 563, 129–134.

    Article  PubMed  CAS  Google Scholar 

  58. Blavier, L., & DeClerck, Y. A. (1997). Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development. Molecular Biology of the Cell, 8, 1513–1527.

    PubMed  CAS  Google Scholar 

  59. Perez-Martinez, L., & Jaworski, D. M. (2005). Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. Journal of Neuroscience, 25, 4917–4929.

    Article  PubMed  CAS  Google Scholar 

  60. Jaworski, D. M., & Perez-Martinez, L. (2006). Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals. Journal of Neurochemistry, 98, 234–247.

    Article  PubMed  CAS  Google Scholar 

  61. Jaworski, D. M., Soloway, P., Caterina, J., & Falls, W. A. (2006). Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits. Journal of Neurobiology, 66, 82–94.

    Article  PubMed  CAS  Google Scholar 

  62. Lamoreaux, W. J., Fitzgerald, M. E., Reiner, A., Hasty, K. A., & Charles, S. T. (1998). Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvascular Research, 55, 29–42.

    Article  PubMed  CAS  Google Scholar 

  63. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.

    Article  PubMed  CAS  Google Scholar 

  64. Caterina, J. J., Yamada, S., Caterina, N. C., Longenecker, G., Holmback, K., Shi, J., et al. (2000). Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. Journal of Biological Chemistry, 275, 26416–26422.

    Article  PubMed  CAS  Google Scholar 

  65. Blavier, L., Lazaryev, A., Dorey, F., Shackleford, G. M., & DeClerck, Y. (2006). Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Research, 66, 2691–2699.

    Article  PubMed  CAS  Google Scholar 

  66. Rhee, J. S., Diaz, R., Korets, L., Hodgson, J. G., & Coussens, L. M. (2004). TIMP-1 alters susceptibility to carcinogenesis. Cancer Research, 64, 952–991.

    Article  PubMed  CAS  Google Scholar 

  67. Akahane, T., Akahane, M., Shah, A., Connor, C. M., & Thorgeirsson, U. P. (2004). TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Experimental Cell Research, 301, 158–167.

    Article  PubMed  CAS  Google Scholar 

  68. Akahane, T., Akahane, M., Shah, A., & Thorgeirsson, U. P. (2004). TIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways. Biochemical & Biophysical Research Communications, 324, 440–445.

    Article  CAS  Google Scholar 

  69. Thorgeirsson, U. P., Yoshiji, H., Sinha, C. C., & Gomez, D. E. (1996). Breast cancer; tumor neovasculature and the effect of tissue inhibitor of metalloproteinases-1 (TIMP-1) on angiogenesis. In Vivo, 10, 137–144.

    PubMed  CAS  Google Scholar 

  70. Yamazaki, M., Akahane, T., Buck, T., Yoshiji, H., Gomez, D. E., Schoeffner, D. J., et al. (2004). Long-term exposure to elevated levels of circulating TIMP-1 but not mammary TIMP-1 suppresses growth of mammary carcinomas in transgenic mice. Carcinogenesis, 25, 1735–1746.

    Article  PubMed  CAS  Google Scholar 

  71. Yoshiji, H., Kuriyama, S., Miyamoto, Y., Thorgeirsson, U. P., Gomez, D. E., Kawata, M., et al. (2000). Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a transgenic mouse model. Hepatology, 32, 1248–1254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Stetler-Stevenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stetler-Stevenson, W.G. The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 27, 57–66 (2008). https://doi.org/10.1007/s10555-007-9105-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9105-8

Keywords

Navigation