Skip to main content

Advertisement

Log in

How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The ferric uptake repressor (Fur) of Pseudomonas aeruginosa, and a wide assortment of other prokaryotic organisms, has been mostly regarded as a negative regulator (repressor) of genes involved in iron acquisition (e.g., expression and utilization of siderophores) or of iron-regulated genes involved in virulence (e.g., toxins). However, there is an emerging picture of an even broader role for this protein in basic bacterial biology. Evidence has now accumulated indicating that Fur acts in a positive manner as well, and that it has a considerably wider impact on gene expression than originally perceived. We discovered that in P. aeruginosa Fur directly (i.e., negatively) regulates the expression of two, nearly identical tandem small (<200nt) RNA transcripts (sRNA). Our initial experiments showed that these Fur-regulated sRNAs (PrrF) affected expression of certain genes we initially thought might be directly, but positively, regulated by Fur. However, with discovery of the Fur-regulated sRNAs, first in Escherichia coli and then in P. aeruginosa, it became clear that Fur, in at least some cases, exerts its positive regulatory effect on gene expression by repressing the expression a negative regulatory factor (i.e., PrrF), which acts at the posttranscriptional level. While a clear picture was already available regarding the function of genes (see above) that are directly repressed by Fur (negative regulation), the functional classes of genes that are influenced by Fur-repressed sRNAs (positive regulation) had not been identified for P. aeruginosa. Accordingly we established a set of rigorous criteria, based on microarray experimental data, to identify the cohort of genes that are likely to be directly influenced by Fur-regulated PrrFs. More than 60 genes that fulfilled these strict criteria were identified. These include genes encoding proteins required for the sequestration of iron (e.g., bacterioferritins) and genes encoding enzymes (superoxide dismutase) vital to defense against iron catalyzed oxidative stress. More notably however, we identified more than 30 genes encoding proteins involved in carbon catabolism and aerobic or anaerobic respiration that are regulated by PrrFs. A significant number of genes encoding enzymes (e.g., aconitase, citrate synthase) involved in the TCA cycle are controlled by the PrrFs however, in quite a few instances there are genes encoding proteins with redundant functions (i.e., aconitase, citrate synthase) that do not appear to be influenced in any way by PrrFs. Based on our microarray experiments, as well as on phenotypic data, we propose that the Fur regulated sRNAs (i.e., PrrFs) exert a powerful regulatory influence that permits the sparing of vital metabolic compounds (e.g., citrate) during periods of iron limitation. These and other data to be presented indicate that Fur controlled gene expression in bacteria like P. aeruginosa is considerably more imperative and intricate than previously appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banin E, Vasil ML et al (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102(31):11076–11081

    Article  CAS  PubMed  Google Scholar 

  • Barton HA, Johnson Z et al (1996) Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21(5):1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Beare PA, For RJ et al (2003) Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47(1):195–207

    Article  CAS  PubMed  Google Scholar 

  • Coy M, Doyle C et al (1994) Site-directed mutagenesis of the ferric uptake regulation gene of Escherichia coli. Biometals 7(4):292–298

    Article  CAS  PubMed  Google Scholar 

  • Coy M, Neilands JB (1991) Structural dynamics and functional domains of the fur protein. Biochemistry 30(33):8201–8210

    Article  CAS  PubMed  Google Scholar 

  • Cunliffe HE, Merriman TR et al (1995) Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 177(10):2744–2750

    CAS  PubMed  Google Scholar 

  • Davis BM, Quinones.M et al (2005) Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 187(12):4005–4014

    Article  CAS  PubMed  Google Scholar 

  • Dubrac S, Touati D (2000) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 182(13):3802–3808

    Article  CAS  PubMed  Google Scholar 

  • Escolar L, Perez-Martin J et al (2000) Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli. J Biol Chem 275(32):24709–24714

    Article  CAS  PubMed  Google Scholar 

  • Fassbinder F, van Vliet AH et al (2000) Identification of iron-regulated genes of Helicobacter pylori by a modified fur titration assay (FURTA-Hp). FEMS Microbiol Lett 184(2):225–229

    Article  CAS  PubMed  Google Scholar 

  • Ghysels B, Dieu BT et al (2004) FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150(Pt 6):1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Gruer MJ, Guest JR (1994) Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140 (Pt 10):2531–2541

    Article  CAS  PubMed  Google Scholar 

  • Jacquamet L, Aberdam D et al (1998) X-ray absorption spectroscopy of a new zinc site in the fur protein from Escherichia coli. Biochemistry 37(8):2564–2571

    Article  CAS  PubMed  Google Scholar 

  • James HE, Beare PA et al (2005) Mutational analysis of a bifunctional ferrisiderophore receptor and signal-transducing protein from Pseudomonas aeruginosa. J Bacteriol 187(13):4514–4520

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Beare PA et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99(10):7072–7077

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Escorcia FE et al (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17(19):2374–2383

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99(7):4620–4625

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Vanderpool CK et al (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187(20):6962–6971

    Article  CAS  PubMed  Google Scholar 

  • Mey AR, Craig SA et al (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 73(9):5706–5719

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Kato H et al (1995) A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet 248(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Niederhoffer EC, Naranjo CM et al (1990) Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol 172(4):1930–1938

    CAS  PubMed  Google Scholar 

  • Ochsner UA, Johnson Z et al (1996) Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol Microbiol 21(5):1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Johnson Z et al (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146 (Pt 1):185–198

    CAS  PubMed  Google Scholar 

  • Ochsner UA, Vasil AI et al (1999) Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J Bacteriol 181(4):1099–1099

    CAS  PubMed  Google Scholar 

  • Ochsner UA, Vasil AI et al (1995) Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol 177(24):7194–7201

    CAS  PubMed  Google Scholar 

  • Ochsner UA, Vasil ML (1996) Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci USA 93(9):4409–4414

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Wilderman PJ et al (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45(5):1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Oglesby AG, Murphy ER et al (2005) Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol Microbiol 58(5):1354–1367

    Article  CAS  PubMed  Google Scholar 

  • Payne SM, Wyckoff EE et al (2006) Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. Biometals 19(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Pecqueur L, D’Autreaux B et al (2006) Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281(30):21286–21295

    Article  CAS  PubMed  Google Scholar 

  • Pohl E, Haller JC et al (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47(4):903–915

    Article  CAS  PubMed  Google Scholar 

  • Prince RW, Storey DG et al (1991) Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01. Mol Microbiol 5(11):2823–2831

    Article  CAS  PubMed  Google Scholar 

  • Rau A, Wyllie S et al (2005) Identification of Chlamydia trachomatis genomic sequences recognized by chlamydial divalent cation-dependent regulator A (DcrA). J Bacteriol 187(2):443–448

    Article  CAS  PubMed  Google Scholar 

  • Redly GA, Poole K (2003) Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol 185(4):1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hennard C et al (2001) Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol Microbiol 39(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Meldrum A et al (2002) FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 184(12):3268–3275

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Parsek MR et al (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417(6888):552–555

    Article  CAS  PubMed  Google Scholar 

  • Somerville GA Chaussee MS et al (2002) Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 70(11):6373–6382

    Article  CAS  Google Scholar 

  • Staudenmaier H, Van Hove B et al (1989) Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J Bacteriol 171(5):2626–2633

    CAS  PubMed  Google Scholar 

  • Stojiljkovic I, Baumler AJ et al (1994) Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236(2):531–545

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Guest JR (1999) Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145 (Pt 11):3069–3079

    CAS  PubMed  Google Scholar 

  • Tang Y, Guest JR et al (2004) Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51(6):1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Touati D, Jacques M et al (1995) Lethal oxidative damage and mutagenesis are generated by iron in Δ fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177(9):2305–2314

    CAS  PubMed  Google Scholar 

  • Tsolis RM, Baumler AJ et al (1995) Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol 177(16):4628–4637

    CAS  PubMed  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34(3):399–413

    Article  CAS  PubMed  Google Scholar 

  • Watnick PI, Eto T et al (1997) Purification of Vibrio cholerae fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J Bacteriol 179(1):243–247

    CAS  PubMed  Google Scholar 

  • Wilderman PJ, Sowa NA et al (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101(26):9792–9797

    Article  CAS  PubMed  Google Scholar 

  • Wilderman PJ, Vasil AI et al (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69(9):5385–5394

    Article  CAS  PubMed  Google Scholar 

  • Xiong YQ, Vasil ML et al (2000) The oxygen- and iron-dependent sigma factor pvdS of Pseudomonas aeruginosa is an important virulence factor in experimental infective endocarditis. J Infect Dis 181(3):1020–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Significant portions of the research described in this review were supported by a grant (R37 AI15940) to Michael Vasil from the National Institute of Allergy and Infectious Diseases. The author sincerely thanks Pete Greenberg for introducing him to the fascinating world of biofilms. The author also sincerely thanks Susan Gottesman and Eric Masse and for very generously sharing their sRNA data before its publication and their very helpful insights. Finally, I wish a special thanks to my highly competent colleagues (e.g., graduate students, postdoctoral fellows) outstanding collaborators, too numerous to mention, who have made significant contributions to the research discussed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Vasil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, M.L. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20, 587–601 (2007). https://doi.org/10.1007/s10534-006-9067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9067-2

Keywords

Navigation