Skip to main content
Log in

Influence of respiratory pressure support on hemodynamics and exercise tolerance in patients with COPD

  • original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 10 July 2010

Abstract

Inspiratory pressure support (IPS) plus positive end-expiratory pressure (PEEP) ventilation might potentially interfere with the “central” hemodynamic adjustments to exercise in patients with chronic obstructive pulmonary disease (COPD). Twenty-one non- or mildly-hypoxemic males (FEV1 = 40.1 ± 10.7% predicted) were randomly assigned to IPS (16 cmH2O) + PEEP (5 cmH2O) or spontaneous ventilation during constant-work rate (70–80% peak) exercise tests to the limit of tolerance (T lim). Heart rate (HR), stroke volume (SV), and cardiac output (CO) were monitored by transthoracic cardioimpedance (Physioflow™, Manatec, France). Oxyhemoglobin saturation was assessed by pulse oximetry (SpO2). At similar SpO2, IPS16 + PEEP5 was associated with heterogeneous cardiovascular effects compared with the control trial. Therefore, 11 patients (Group A) showed stable or increased Δ “isotime” – rest SV [5 (0–29) mL], lower ΔHR but similar ΔCO. On the other hand, ΔSV [−10 (−15 to −3) mL] and ΔHR were both lower with IPS16 + PEEP5 in Group B (N = 10), thereby reducing ΔCO (p < 0.05). Group B showed higher resting lung volumes, and T lim improved with IPS16 + PEEP5 only in Group A [51 (−60 to 486) vs. 115 (−210 to 909) s, respectively; p < 0.05]. We conclude that IPS16 + PEEP5 may improve SV and exercise tolerance in selected patients with advanced COPD. Impaired SV and CO responses, associated with a lack of enhancement in exercise capacity, were found in a sub-group of patients who were particularly hyperinflated at rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ambrosino N, Nava S, Torbicki A et al (1993) Haemodynamic effects of pressure support and PEEP ventilation by nasal route in patients with stable chronic obstructive pulmonary disease. Thorax 48:523–528

    Article  PubMed  CAS  Google Scholar 

  • Baril J, de Souza M, Leroy D et al (2006) Does dynamic hyperinflation impair submaximal exercise cardiac output in chronic obstructive pulmonary disease? Clin Invest Med 29:104–109

    PubMed  Google Scholar 

  • Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909

    Article  PubMed  CAS  Google Scholar 

  • Bianchi L, Foglio K, Porta R, Baiardi R, Vitacca M, Ambrosino N (2002) Lack of additional effect of adjunct of assisted ventilation to pulmonary rehabilitation in mild COPD patients. Respir Med 96:359–367

    Article  PubMed  CAS  Google Scholar 

  • Bogaard HJ, Dekker BM, Arntzen BW et al (1998) The hemodynamic response to exercise in chronic obstructive pulmonary disease: assessment by impedance cardiography. Eur Respir J 12:374–379

    Article  PubMed  CAS  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  • Borghi-Silva A, Oliveira CC, Carrascosa CR et al (2008) Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 63:910–915

    Article  PubMed  CAS  Google Scholar 

  • Borghi-Silva A, Di Thommazo L, Pantoni CB, Mendes RG, Salvini T-F, Costa D (2009) Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD. Respirology 14:537–544

    Article  PubMed  Google Scholar 

  • Bougault V, Lonsdorfer-Wolf E, Charloux A et al (2005) Does thoracic bioimpedance accurately determine cardiac output in COPD patients during maximal or intermittent exercise? Chest 127:1122–1131

    Article  PubMed  Google Scholar 

  • Chabot F, Schrijen F, Poincelot F, Polu JM (2001) Interpretation of high wedge pressure on exercise in patients with chronic obstructive pulmonary disease. Cardiology 95:139–145

    Article  PubMed  CAS  Google Scholar 

  • Charloux A, Lonsdorfer-Wolf E, Richard R et al (2000) A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol 82:313–320

    Article  PubMed  CAS  Google Scholar 

  • Chiappa GR, Borghi-Silva A, Ferreira LF et al (2008) Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. J Appl Physiol 104:1341–1350

    Article  PubMed  Google Scholar 

  • Chiappa GR, Queiroga F Jr, Meda E et al (2009) Heliox improves oxygen delivery and utilization during dynamic exercise in patients with COPD. Am J Respir Crit Care Med 179:1004–1010

    Article  PubMed  Google Scholar 

  • Confalonieri M, Gazzaniga P, Gandola L et al (1998) Haemodynamic response during initiation of non-invasive positive pressure ventilation in COPD patients with acute ventilatory failure. Respir Med 92:331–337

    Article  PubMed  CAS  Google Scholar 

  • Costes F, Agresti A, Court-Fortune I, Roche F, Vergnon JM, Barthélémy JC (2003) Noninvasive ventilation during exercise training improves exercise tolerance in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil 23:307–313

    Article  PubMed  Google Scholar 

  • Denault AY, Gorcsan J 3rd, Pinsky MR (2001) Dynamic effects of positive-pressure ventilation on canine left ventricular pressure-volume relations. J Appl Physiol 91:298–308

    PubMed  CAS  Google Scholar 

  • Díaz O, Iglesia R, Ferrer M et al (1997) Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 156:1840–1845

    PubMed  Google Scholar 

  • Díaz O, Bégin P, Torrealba B, Jover E, Lisboa C (2002) Effects of noninvasive ventilation on lung hyperinflation in stable hypercapnic COPD. Eur Respir J 20:1490–1498

    Article  PubMed  Google Scholar 

  • Fadel PJ (2008) Arterial baroreflex control of the peripheral vasculature in humans: rest and exercise. Med Sci Sports Exerc 40:2055–2082

    Article  PubMed  Google Scholar 

  • Hanaoka M, Ideura G, Ito M et al (2008) Pulmonary haemodynamic changes in patients with severe COPD. Respirology 13:919–922

    Article  PubMed  Google Scholar 

  • Hawkins P, Johnson LC, Nikoletou D, Hamnegård CH, Sherwood R, Polkey MI et al (2002) Proportional assist ventilation as an aid to exercise training in severe chronic obstructive pulmonary disease. Thorax 57:853–859

    Article  PubMed  CAS  Google Scholar 

  • Holverda S, Rietema H, Westerhof N, Marcus JT, Gan CT-G, Postmus PE et al (2009) Stroke volume increase to exercise in chronic obstructive pulmonary disease is limited by increased pulmonary artery pressure. Heart 95:137–141

    Article  PubMed  CAS  Google Scholar 

  • Keilty SEJ, Ponte J, Fleming TA, Moxham J (1994) Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease. Thorax 49:990–994

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Wang C, Yang Y, Huang K, Jiang C (2001) Effects of extrinsic positive end-expiratory pressure on cardiopulmonary function in patients with chronic obstructive pulmonary disease. Chin Med J 114:912–915

    PubMed  CAS  Google Scholar 

  • Kyroussis D, Polkey MI, Hamnegård CH, Mills GH, Green M, Moxham J (2000) Respiratory muscle activity in patients with COPD walking to exhaustion with and without pressure support. Eur Respir J 15:649–655

    Article  PubMed  CAS  Google Scholar 

  • Light RW, Mintz HM, Linden GS, Brown SE (1984) Hemodynamics of patients with severe chronic obstructive pulmonary disease during progressive upright exercise. Am Rev Respir Dis 130:391–395

    PubMed  CAS  Google Scholar 

  • Mahler DA, Brent BN, Loke J, Zaret BL, Matthay RA (1984) Right ventricular performance and central circulatory hemodynamics during upright exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 130:722–729

    PubMed  CAS  Google Scholar 

  • Maltais F, Reissmann H, Gottfried SB (1995) Pressure support reduces inspiratory effort and dyspnea during exercise in chronic airflow obstruction. Am J Respir Crit Care Med 151:1027–1033

    PubMed  CAS  Google Scholar 

  • Marangoni S, Vitacca M, Quadri A, Schena M, Clini E (1997) Non-invasive haemodynamic effects of two nasal positive pressure ventilation modalities in stable chronic obstructive lung disease patients. Respiration 64:138–144

    Article  PubMed  CAS  Google Scholar 

  • Matthay RA, Berger HJ, Davies RA et al (1980) Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide assessment. Ann Intern Med 93:234–239

    PubMed  CAS  Google Scholar 

  • Miki K, Maekura R, Hiraga T et al (2008) The degree of exercise hypoxemia reflects pulmonary artery pressure during early exercise in chronic obstructive pulmonary disease patients. Clin Physiol Funct Imaging 28:64–69

    PubMed  Google Scholar 

  • Montes de Oca M, Rassulo J, Celli BR (1996) Respiratory muscle and cardiopulmonary function during exercise in very severe COPD. Am J Respir Crit Care Med 154:1284–1289

    PubMed  CAS  Google Scholar 

  • Morrison DA, Adcock K, Collins CM, Goldman S, Caldwell JH, Schwars MI (1987) Right ventricular dysfunction and exercise limitation in chronic obstructive pulmonary disease. J Am Coll Cardiol 9:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Nava S, Ambrosino N, Rubini F et al (1993) Effect of nasal pressure support ventilation and external PEEP on diaphragmatic activity in patients with severe stable COPD. Chest 103:143–150

    Article  PubMed  CAS  Google Scholar 

  • Neder JA, Andreoni S, Castelo-Filho A, Nery LE (1999a) Reference values for lung function tests. I. Static volumes. Braz J Med Biol Res 32:703–717

    PubMed  CAS  Google Scholar 

  • Neder JA, Andreoni S, Peres C, Nery LE (1999b) Reference values for lung function tests. III. Carbon monoxide diffusing capacity (transfer factor). Braz J Med Biol Res 32:729–737

    PubMed  CAS  Google Scholar 

  • Neder JA, Nery LE, Castelo A et al (1999c) Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J 14:131–1304

    Article  Google Scholar 

  • Padeletti M, Jelic S, LeJemtel TH (2008) Coexistent chronic obstructive pulmonary disease and heart failure in the elderly. Int J Cardiol 125:209–215

    Article  PubMed  Google Scholar 

  • Petrof BJ, Calderini E, Gottfried SB (1990) Effect of CPAP on respiratory effort and dyspnoea during exercise in severe COPD. J Appl Physiol 69:179–218

    PubMed  CAS  Google Scholar 

  • Polkey MI, Kyroussis D, Mills GH, Hamnegard C, Keilty SE, Green M et al (1996) Inspiratory pressure support reduces slowing of inspiratory muscle relaxation rate during exhaustive treadmill walking in severe COPD. Am J Respir Crit Care Med 154:1146–1150

    PubMed  CAS  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  • Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuß G et al (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32:387–392

    Article  PubMed  CAS  Google Scholar 

  • Ries AL, Bauldoff GS, Carlin BW et al (2007) Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based clinical practice guidelines. Chest 131(5 Suppl):4S–42S

    Article  PubMed  Google Scholar 

  • Rietema H, Holverda S, Bogaard HJ, Marcus JT, Smit HJ, Westerhof N et al (2008) Sildenafil treatment in COPD does not affect stroke volume or exercise capacity. Eur Respir J 31:759–764

    Article  PubMed  CAS  Google Scholar 

  • Rutten FH, Cramer MJ, Grobbee DE et al (2005) Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J 26:1887–1894

    Article  PubMed  Google Scholar 

  • Scano G, Grazzini M, Stendardi L, Gigliotti F (2006) Respiratory muscle energetics during exercise in healthy subjects and patients with COPD. Respir Med 100:1896–1906

    Article  PubMed  Google Scholar 

  • Stark-Levya KN, Beck KC, Johnson BD (2004) Influence of expiratory loading and hyperinflation on cardiac output during exercise. J Appl Physiol 96:1920–1927

    Article  Google Scholar 

  • Stewart RI, Lewis CM (1986) Cardiac output during exercise in patients with COPD. Chest 89:199–205

    Article  PubMed  CAS  Google Scholar 

  • Taylor R, Covell J, Sonnenblick E, Ross J (1967) Dependence of ventricular distensibility on the filling of the opposite ventricle. Am J Physiol 213:711–718

    PubMed  CAS  Google Scholar 

  • Van’t Hul A, Kwakkel G, Gosselink R (2002) The acute effects of noninvasive ventilatory support during exercise on exercise endurance and dyspnea in patients with chronic obstructive pulmonary disease: a systematic review. J Cardiopulm Rehabil 22:290–297

    Article  Google Scholar 

  • Van’t Hul A, Gosselink R, Hollander P, Postmus P, Kwakkel G (2004) Acute effects of inspiratory pressure support during exercise in patients with COPD. Eur Respir J 23:34–40

    Article  Google Scholar 

  • Vassaux C, Torre-Bouscoulet L, Zeineldine S, Cortopassi F, Paz-Díaz H, Celli B et al (2008) Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD. Eur Respir J 32:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Whittemberger JL, McGregor M, Berglund E, Borst HG (1960) Influence of the state of the lung on pulmonary vascular resistance. J Appl Physiol 15:878–882

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to the patients for their effort and enthusiastic cooperation during the study. The study was supported by a Research Grant from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, São Paulo, Brazil) No. 06/53113-3. CCO was a recipient of a Master Scholarship Grant from FAPESP. JAN and LEN are Established Investigators (level II) of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Conflict of interest statement

None of the authors has any financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alberto Neder.

Additional information

Communicated by Susan Ward.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00421-010-1569-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, C.C., Carrascosa, C.R., Borghi-Silva, A. et al. Influence of respiratory pressure support on hemodynamics and exercise tolerance in patients with COPD. Eur J Appl Physiol 109, 681–689 (2010). https://doi.org/10.1007/s00421-010-1408-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1408-8

Keywords

Navigation