Skip to main content
Log in

Changes in Exhaled Nitric Oxide Levels After Bronchial Allergen Challenge

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Fractional exhaled nitric oxide (FeNO) is a marker of inflammation of the airways accompanying changes in the clinical condition of asthma. Allergen exposure has been associated with a delayed elevation of FeNO. The aim of this study was to assess airway inflammation with FeNO measurements during bronchial allergen challenge (BAC), and to determine the diagnostic performance of FeNO changes.

Methods

Thirty-four patients with asthma and sensitization to inhalant allergens were studied. BAC with common or high-molecular-weight occupational aeroallergens was performed. FeNO was measured before and 24 h after BAC. Receiver operating characteristics curve was built to assess the sensitivity and specificity of increase in FeNO levels associated with BAC outcome.

Results

In 21 patients (61.76%) a positive asthmatic reaction (responders) was observed. A significant increase in postchallenge FeNO was observed in this group of patients compared to the group of nonresponders. A median increase (FeNO postchallenge–FeNO prechallenge) of 14.0 ppb was observed in the group of responders, whereas a −1.0 ppb change was attained in the nonresponder group (P < 0.001). The cutoff point providing maximal sensitivity and specificity for %ΔFeNO after BAC was 12%. This change in FeNO levels has a sensitivity of 0.81 and a specificity of 0.92 for predicting a positive outcome in the BAC.

Conclusion

FeNO measurements can be used as a surrogate of airway inflammation accompanying the asthmatic reaction induced by BAC. FeNO measurements may be a useful and reliable tool in the monitoring and interpreting specific bronchial challenge test with allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alving K, Weitzberg E, Lundberg JM (1993) Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 6:1368–1370

    PubMed  CAS  Google Scholar 

  2. Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Sinebourne EA, Barnes PJ (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343:133–135

    Article  PubMed  CAS  Google Scholar 

  3. Person MG, Zetterström O, Agrenius V, Ihre E, Gustafsson LE (1994) Single breath nitric oxide measurements in asthmatic patients and smokers. Lancet 343:146–147

    Article  Google Scholar 

  4. Robbins RA, Springall DR, Warren JB et al (1994) Inducible nitric oxide synthase is increased in murine lung epithelial cells by cytokine stimulation. Biochem Biophys Res Commun 198:835–843

    Article  PubMed  CAS  Google Scholar 

  5. Silkoff PE (2000) Noninvasive measurements of airway inflammation using exhaled nitric oxide and induced sputum: current status and future use. Clin Chest Med 21:345–360

    Article  PubMed  CAS  Google Scholar 

  6. Alving K, Malinovschi A (2010) Basic aspects of exhaled nitric oxide. Eur Respir Mon 49:1–31

    Article  Google Scholar 

  7. Obata H, Dittrick M, Chan H, Chan-Yeung M (1999) Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with red cedar asthma. Eur Respir J 13:489–495

    Article  PubMed  CAS  Google Scholar 

  8. Chang-Yeung M, Obata H, Dittrick M, Chan H, Abboud R (1999) Airway inflammation, exhaled nitric oxide and severity of asthma in patients with red cedar asthma. Am J Respir Crit Care Med 159:1434–1438

    Google Scholar 

  9. Silvestri M, Spallarossa D, Frangova Yourukova V, Battistini E, Fregonese B, Rossi GA (1999) Orally exhaled nitric oxide levels are related to the degree of blood eosinophilia in atopic children with mild-intermittent asthma. Eur Respir J 13:321–326

    Article  PubMed  CAS  Google Scholar 

  10. Bates CA, Silkoff PE (2003) Exhaled nitric oxide in asthma: from bench to the bedside. J Allergy Clin Immunol 111:256–262

    Article  PubMed  CAS  Google Scholar 

  11. Plats-Mills TAE, Heymann PW, Longbottom JL, Wilkins SR (1986) Airborne allergens associated with asthma: particle sizes carrying dust mite and rat allergens measured with a cascade impactor. J Allergy Clin Immunol 77:850–857

    Article  Google Scholar 

  12. De Monchy JG, Kauffman HF, Venge P, Koëter GH, Jansen HM, Sluiter HJ, De Vries K (1985) Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 131:373–376

    PubMed  Google Scholar 

  13. Durham SR, Graneek BJ, Hawkins R, Newman Taylor AJ (1987) The temporal relationship between increases in airway hyperresponsiveness to histamine and late asthmatic responses induced by occupational agents. J Allergy Clin Immunol 79:398–406

    Article  PubMed  CAS  Google Scholar 

  14. Kharitonov SA, O’Connor BJ, Evans DJ, Barnes PJ (1995) Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 151:1894–1899

    PubMed  CAS  Google Scholar 

  15. Paredi P, Leckie MJ, Horvath I, Allegra L, Kharitonov SA, Barnes PJ (1999) Changes in exhaled carbon monoxide and nitric oxide levels following allergen challenge in patients with asthma. Eur Respir J 13:48–52

    Article  PubMed  CAS  Google Scholar 

  16. Swiebocka E, Siergiejko G, Siergiejko Z (2011) Bronchial allergen challenge in allergic children: continuous increase of nitric oxide in exhaled air 72 hours after allergen inhalation independent of bronchial obstruction. J Aerosol Med Pulm Drug Deliv 24:17–24

    Article  PubMed  CAS  Google Scholar 

  17. GEMA 2009 (2010) Spanish guideline on the management of asthma. Executive Committee GEMA 2009. J Investig Allergol Clin Immunol 20 (1):1–59

  18. Dreborg S, Frew AJ (1993) EAACI Position paper: allergen standardization and skin tests. The European academy of allergology and clinical immunology. Allergy 48(14):48–82

    Google Scholar 

  19. American Thoracic Society (1995) Standardization of spirometry-1994 update. Am J Respir Crit Care Med 152:1107–1136

    Google Scholar 

  20. Roca J, Sanchis J, Agustí-Vidal A, Segarra F, Navajas D, Rodriguez-Roisin R, Casan P, Sans S (1986) Spirometric reference values for a Mediterranean population. Bull Eur Physiopathol Respir 22:217–224

    PubMed  CAS  Google Scholar 

  21. Menzies D, Nair A, Lipworth BJ (2007) Portable nitric oxide measurement. Comparison with the “gold standard” technique. Chest 131:410–414

    Article  PubMed  CAS  Google Scholar 

  22. Melillo G, Bonini S, Cocco G, Davies RJ, de Monchy JG, Frølund L, Pelikan Z (1997) EAACI provocation tests with allergens. Report prepared by the European Academy of Allergology and Clinical Immunology Subcommittee on provocation tests with allergens. Allergy 52:1–35

    Article  PubMed  CAS  Google Scholar 

  23. Letrán A, Palacín A, Barranco P, Salcedo G, Pascual C, Quirce S (2008) Rye flour allergens: an emerging role in baker’s asthma. Am J Ind Med 51:324–328

    Article  PubMed  Google Scholar 

  24. Chai H, Farr RS, Froehlich LA, Mathison DA, McLean JA, Rosenthal RR et al (1975) Standardization of bronchial inhalation challenge procedures. J Allergy Clin Immunol 56:323–327

    Article  PubMed  CAS  Google Scholar 

  25. Pedrosa M, Cancelliere N, Barranco P, López-Carrasco V, Quirce S (2010) Usefulness of exhaled nitric oxide for diagnosing asthma. J Asthma 47:817–821

    Article  PubMed  CAS  Google Scholar 

  26. Ihre E, Gyllfors P, Gustafsson LE, Kumlin M, Dahlén B (2006) Early rise in exhaled nitric oxide and mast cell activation in repeated low-dose allergen challenge. Eur Respir J 27:1152–1159

    Article  PubMed  CAS  Google Scholar 

  27. Swierczyńska-Machura D, Krakowiak A, Wiszniewska M, Dudek W, Walusiak J, Pałczyński C (2008) Exhaled nitric oxide levels after specific inhalatory challenge test in subjects with diagnosed occupational asthma. Int J Occup Med Environ Health 21:219–225

    Article  PubMed  Google Scholar 

  28. Quirce S, Lemière C, de Blay F, del Pozo V, Van Gerth Wijk R, Maestrelli P, Pauli G, Pignatti P, Raulf-Heimsoth M, Sastre J, Storaas T, Moscato G (2010) Noninvasive methods for assessment of airway inflammation in occupational settings. Allergy 65:445–458

    Article  PubMed  CAS  Google Scholar 

  29. Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, Wilson AJ, Geller DA, Polak JM (1994) Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203:209–218

    Article  PubMed  CAS  Google Scholar 

  30. Ohkawara Y, Yamauchi K, Tanno Y, Tamura G, Ohtani H, Nagura H, Ohkuda K, Takishima T (1992) Human lung mast cells and pulmonary macrophages produce tumor necrosis factor-alpha in sensitized lung tissue after IgE receptor triggering. Am J Respir Cell Mol Biol 7:385–392

    PubMed  CAS  Google Scholar 

  31. Virchow JC, Walker C, Hafner D, Kortsik C, Werner P, Matthys H, Kroegel C (1995) T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am J Respir Crit Care Med 151:960–968

    PubMed  Google Scholar 

  32. Lemière C, D’Alpaos V, Chaboillez S, César M, Wattiez M, Chiry S, Vandenplas O (2010) Investigation of occupational asthma: sputum cell counts or exhaled nitric oxide? Chest 137:617–622

    Article  PubMed  Google Scholar 

  33. Ricciardolo FLM, Timmers MC, Sont JK, Folkerts G, Sterk PJ (2003) Effect of bradykinin on allergen induced increase in exhaled nitric oxide in asthma. Thorax 58:840–845

    Article  PubMed  CAS  Google Scholar 

  34. Baur X, Barbinova L (2005) Latex allergen exposure increases exhaled nitric oxide in symptomatic healthcare workers. Eur Respir J 25:309–316

    Article  PubMed  CAS  Google Scholar 

  35. Allmers H, Chen Z, Barbinova L, Marczynski B, Kirschmann V, Baur X (2000) Challenge from methacholine, natural rubber latex, or 4,4-diphenylmethane diisocyanate in workers with suspected sensitization affects exhaled nitric oxide (change in exhaled NO levels after allergen challenges). Int Arch Occup Environ Health 73:181–186

    Article  PubMed  CAS  Google Scholar 

  36. Piipari R, Piirilä P, Keskinen H, Tuppurainen M, Sovijärvi A, Nordman H (2002) Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur Respir J 20:1532–1537

    Article  PubMed  CAS  Google Scholar 

  37. Barbinova L, Baur X (2006) Increase in exhaled nitric oxide (eNO) after work-related isocyanate exposure. Int Arch Occup Environ Health 79:387–395

    Article  PubMed  CAS  Google Scholar 

  38. Lemière C, Chaboillez S, Malo JL, Cartier A (2001) Changes in sputum cell counts after exposure to occupational agents: what do they mean? J Allergy Clin Immunol 107:1063–1068

    Article  PubMed  Google Scholar 

  39. Fernández-Nieto M, Sastre B, Sastre J, Lahoz C, Quirce S, Madero M, del Pozo V (2009) Changes in sputum eicosanoids and inflammatory markers after inhalation challenges with occupational agents. Chest 136:1308–1315

    Article  PubMed  Google Scholar 

Download references

Disclosure

The authors have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pedrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrosa, M., Barranco, P., López-Carrasco, V. et al. Changes in Exhaled Nitric Oxide Levels After Bronchial Allergen Challenge. Lung 190, 209–214 (2012). https://doi.org/10.1007/s00408-011-9358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-011-9358-4

Keywords

Navigation