Skip to main content
Log in

The case for transgenerational epigenetic inheritance in humans

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Work in the laboratory mouse has identified a group of genes, called metastable epialleles, that are informing us about the mechanisms by which the epigenetic state is established in the embryo. At these alleles, transcriptional activity is dependent on the epigenetic state and this can vary from cell to cell in the one tissue type. The decision to be active or inactive is probabilistic and sensitive to environmental influences. Moreover, in some cases the epigenetic state at these alleles can survive across generations, termed transgenerational epigenetic inheritance. Together these findings raise the spectre of Lamarckism and epigenetics is now being touted as an explanation for some intergenerational effects in human populations. In this review we will discuss the evidence so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allen ND, Norris ML, Surani MA (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61:853–861

    Article  PubMed  CAS  Google Scholar 

  • Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ et al (2005) An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci USA 102:7629–7634

    Article  PubMed  CAS  Google Scholar 

  • Bruder CEG, Piotrowski A, Gijsbers AACJ, Andersson R, Erickson S et al (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82:763–771

    Article  PubMed  CAS  Google Scholar 

  • Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O et al (2003) Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 72:571–577

    Article  PubMed  CAS  Google Scholar 

  • Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Youngson NA, Whitelaw E (2007) Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet 39:574–575

    Article  PubMed  CAS  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DIK (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA 103:17308–17312

    Article  PubMed  CAS  Google Scholar 

  • Dean W, Santos F, Reik W (2003) Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14:93–100

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat colour and protects A vy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  PubMed  CAS  Google Scholar 

  • Duhl DMJ, Vrieling H, Miller KA, Wolff GL, Barsh GS (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8:59–65

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  • Hadchouel M, Farza H, Simon D, Tiollais P, Pourcel C (1987) Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329:454–456

    Article  PubMed  CAS  Google Scholar 

  • Herman H, Lu M, Anggraini M, Sikora A, Chang Y et al (2003) Trans allele methylation and paramutation-like effects in mice. Nat Genet 34:199–202

    Article  PubMed  CAS  Google Scholar 

  • Hitchins MP, Ward RL (2007) Addendum: Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 39:1414

    Article  CAS  Google Scholar 

  • Hitchins MP, Ward RL (2008) MLH1 germ-line epimutations: is there strong evidence of its inheritance? Gastroenterology 134:359–360

    Article  PubMed  Google Scholar 

  • Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI et al (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705

    Article  PubMed  CAS  Google Scholar 

  • Leung SY, Chan TL, Yuen ST (2007) Reply to “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance”. Nat Genet 39:576

    Article  CAS  Google Scholar 

  • Lumey LH (1992) Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol 6:240–253

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Sutherland HE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  PubMed  CAS  Google Scholar 

  • Oates NA, van Vliet J, Duffy DL, Kroes HY, Martin NG et al (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79:155–162

    Article  PubMed  CAS  Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166

    Article  PubMed  Google Scholar 

  • Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22:347–350

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD et al (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100:2538–2543

    Article  PubMed  CAS  Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  PubMed  CAS  Google Scholar 

  • Roemer I, Reik W, Dean W, Klose J (1997) Epigenetic inheritance in the mouse. Curr Biol 7:277–280

    Article  PubMed  CAS  Google Scholar 

  • Stein AD, Lumey LH (2002) The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 72:641–654

    Google Scholar 

  • Suter CM, Martin DIK (2007) Reply to “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance”. Nat Genet 39:575–576

    Article  CAS  Google Scholar 

  • Suter CM, Martin DIK, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Travisano M, Tahiliani KG (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 21:3380–3385

    Article  PubMed  CAS  Google Scholar 

  • Wolff GL (1978) Influence of maternal phenotype on metabolic differentiation of agouti locus mutants in the mouse. Genetics 88:529–539

    PubMed  CAS  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in A vy /a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

E.W. is supported by the National Health and Medical Research Council (NHMRC), the Queensland Institute of Medical Research (QIMR), and the Australian Research Council (ARC). D.M. is supported by an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Whitelaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.K., Whitelaw, E. The case for transgenerational epigenetic inheritance in humans. Mamm Genome 19, 394–397 (2008). https://doi.org/10.1007/s00335-008-9124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9124-y

Keywords

Navigation