Skip to main content
Log in

Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices

  • Special Article
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Until now, tools for continuous cardiac output (CO) monitoring have been validated as if they were tools for snapshot measurements. Most authors have compared variations in cardiac output between two time-points and used Bland–Altman representations to describe the agreement between these variations. The impacts of time and of repetitive measurements over time are not taken into consideration.

Purpose

This special article proposes a conceptual framework for the validation of CO monitoring devices. Four quality criteria are suggested and studied: (1) accuracy (small bias), (2) precision (small random error of measurements), (3) short response time and (4) accurate amplitude response. Because a tolerance is obviously admitted for each of these four criteria, we propose to add as a fifth criterion the ability to detect significant CO directional changes. Other important issues in designing studies to validate CO monitoring tools are reviewed: choice of patient population to be studied, choice of the reference method, data acquisition method, data acceptability checking, data segmentation and final evaluation of reliability.

Conclusion

Application of this framework underlines the importance of precision and time response for clinical acceptability of monitoring tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C (2007) Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med 33:1191–1194

    Article  PubMed  Google Scholar 

  2. de Wilde RB, Schreuder JJ, van den Berg PC, Jansen JR (2007) An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia 62:760–768

    Article  PubMed  Google Scholar 

  3. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  4. Cecconi M, Grounds M, Rhodes A (2007) Methodologies for assessing agreement between two methods of clinical measurement: are we as good as we think we are? Curr Opin Crit Care 13:294–296

    Article  PubMed  Google Scholar 

  5. Fick A (1870) Ueber die Messung des Blutquantums in den Herzventrikeln. Würzburg

  6. Stickland MK, Welsh RC, Haykowsky MJ, Petersen SR, Anderson WD, Taylor DA, Bouffard M, Jones RL (2006) Effect of acute increases in pulmonary vascular pressures on exercise pulmonary gas exchange. J Appl Physiol 100:1910–1917

    Article  PubMed  Google Scholar 

  7. Botero M, Kirby D, Lobato EB, Staples ED, Gravenstein N (2004) Measurement of cardiac output before and after cardiopulmonary bypass: Comparison among aortic transit-time ultrasound, thermodilution, and noninvasive partial CO2 rebreathing. J Cardiothorac Vasc Anesth 18:563–572

    Article  PubMed  Google Scholar 

  8. Keren H, Burkhoff D, Squara P (2007) Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol 293:H583–H589

    Article  PubMed  CAS  Google Scholar 

  9. Stetz CW, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126:1001–1004

    PubMed  CAS  Google Scholar 

  10. Hillis LD, Firth BG, Winniford MD (1985) Analysis of factors affecting the variability of Fick versus indicator dilution measurements of cardiac output. Am J Cardiol 56:764–768

    Article  PubMed  CAS  Google Scholar 

  11. Rubini A, Del Monte D, Catena V, Attar I, Cesaro M, Soranzo D, Rattazzi G, Alati GL (1995) Cardiac output measurement by the thermodilution method: an in vitro test of accuracy of three commercially available automatic cardiac output computers. Intensive Care Med 21:154–158

    Article  PubMed  CAS  Google Scholar 

  12. De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL (1994) Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med 150:95–100

    PubMed  Google Scholar 

  13. Lu Z, Mukkamala R (2006) Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis. J Appl Physiol 101:598–608

    Article  PubMed  Google Scholar 

  14. Cecconi M, Dawson D, Grounds R, Rhodes A (2009) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care med 35:498–504

    Article  PubMed  CAS  Google Scholar 

  15. Haller M, Zollner C, Briegel J, Forst H (1995) Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 23:860–866

    Article  PubMed  CAS  Google Scholar 

  16. Le Tulzo Y, Belghith M, Seguin P, Dall’Ava J, Monchi M, Thomas R, Dhainaut JF (1996) Reproducibility of thermodilution cardiac output determination in critically ill patients: comparison between bolus and continuous method. J Clin Monit 12:379–385

    Article  PubMed  CAS  Google Scholar 

  17. Zollner C, Goetz AE, Weis M, Morstedt K, Pichler B, Lamm P, Kilger E, Haller M (2001) Continuous cardiac output measurements do not agree with conventional bolus thermodilution cardiac output determination. Can J Anaesth 48:1143–1147

    Article  PubMed  CAS  Google Scholar 

  18. Bendjelid K, Schutz N, Suter PM, Romand JA (2006) Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med 32:919–922

    Article  PubMed  Google Scholar 

  19. Maxwell RA, Gibson JB, Slade JB, Fabian TC, Proctor KG (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 51:849–853

    Article  PubMed  CAS  Google Scholar 

  20. Della Rocca G, Costa MG, Coccia C, Pompei L, Di Marco P, Vilardi V, Pietropaoli P (2003) Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anaesth 50:707–711

    Article  PubMed  Google Scholar 

  21. Kotake Y, Moriyama K, Innami Y, Shimizu H, Ueda T, Morisaki H, Takeda J (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 99:283–288

    Article  PubMed  Google Scholar 

  22. Boldt J, Menges T, Wollbruck M, Hammermann H, Hempelmann G (1994) Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med 22:1913–1918

    Article  PubMed  CAS  Google Scholar 

  23. Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25:388–391

    Article  PubMed  CAS  Google Scholar 

  24. Luchette FA, Porembka D, Davis K Jr, Branson RD, James L, Hurst JM, Johannigman JA, Campbell RS (2000) Effects of body temperature on accuracy of continuous cardiac output measurements. J Invest Surg 13:147–152

    Article  PubMed  CAS  Google Scholar 

  25. Mihm FG, Gettinger A, Hanson CW 3rd, Gilbert HC, Stover EP, Vender JS, Beerle B, Haddow G (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 26:1346–1350

    Article  PubMed  CAS  Google Scholar 

  26. Medin DL, Brown DT, Wesley R, Cunnion RE, Ognibene FP (1998) Validation of continuous thermodilution cardiac output in critically ill patients with analysis of systematic errors. J Crit Care 13:184–189

    Article  PubMed  CAS  Google Scholar 

  27. Sun Q, Rogiers P, Pauwels D, Vincent JL (2002) Comparison of continuous thermodilution and bolus cardiac output measurements in septic shock. Intensive Care Med 28:1276–1280

    Article  PubMed  Google Scholar 

  28. Su NY, Huang CJ, Tsai P, Hsu YW, Hung YC, Cheng CR (2002) Cardiac output measurement during cardiac surgery: esophageal Doppler versus pulmonary artery catheter. Acta Anaesthesiol Sin 40:127–133

    PubMed  Google Scholar 

  29. Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066

    Article  PubMed  Google Scholar 

  30. Chew M, Poelaert J (2003) Accuracy and repeatability of pediatric cardiac output measurement using Doppler: 20-year review of the literature. Intensive Care Med 1889–1894

  31. de Waal EE, Kalkman CJ, Rex S, Buhre WF (2007) Validation of a new arterial pulse contour-based cardiac output device. Crit Care Med 35:1904–1909

    Article  PubMed  Google Scholar 

  32. Friesecke S, Heinrich A, Abel P, Felix S (2009) Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method. Crit Care Med 37:119–123

    Article  PubMed  Google Scholar 

  33. Singh A, Juneja R, Mehta Y, Trehan N (2002) Comparison of continuous, stat, and intermittent cardiac output measurements in patients undergoing minimally invasive direct coronary artery bypass surgery. J Cardiothorac Vasc Anesth 16:186–190

    Article  PubMed  Google Scholar 

  34. John-Alder H, Bennet A (1981) Thermal dependence of endurance and locomotory energetics in a lizard. Am J Physiol 241:R342–R349

    PubMed  CAS  Google Scholar 

  35. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  PubMed  CAS  Google Scholar 

  36. Squara P (2004) Matching total body oxygen consumption and delivery: a crucial objective? Intensive Care Med 30:2170–2179

    Article  PubMed  Google Scholar 

  37. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  38. Squara P, Fourquet E, Jacquet L, Broccard A, Uhlig T, Rhodes A, Bakker J, Perret C (2003) A Computer Program for Interpreting Pulmonary Artery Catheterization Data: Results of the European HEMODYN Resident Study. Intensive Care Med 29:735–741

    PubMed  Google Scholar 

  39. Poli de Figueiredo LF, Malbouisson LM, Varicoda EY, Carmona MJ, Auler JO Jr, Rocha e Silva M (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 47:288–293

    Article  PubMed  CAS  Google Scholar 

  40. Siegel LC, Hennessy MM, Pearl RG (1996) Delayed time response of the continuous cardiac output pulmonary artery catheter. Anesth Analg 83:1173–1177

    Article  PubMed  CAS  Google Scholar 

  41. Monnet X, Teboul J (2008) Passive leg raising. Intensive Care Med 34:659–663

    Article  PubMed  Google Scholar 

  42. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds R (2009) Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies—with specific reference to the measurement of cardiac output. Crit Care 13:201

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest statement

P.S. is a consultant for Cheetah Medical and has been a consultant for Edwards. M.C. has no conflict of interest to disclose. M.S. is a consultant for Deltex & Edwards. A.R. has been a consultant for LIDCO, Edwards & Cheetah Medical. J.D.C. has been a consultant for Edwards & Cheetah Medical, and is member of the Medical Advisory Board of GE Healthcare & Massimo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Chiche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squara, P., Cecconi, M., Rhodes, A. et al. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med 35, 1801–1808 (2009). https://doi.org/10.1007/s00134-009-1570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1570-9

Keywords

Navigation