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ABSTRACT  Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterised by their
potential to control T-cell responses and to dampen inflammation. While the role of MDSCs in cancer has
been studied in depth, our understanding of their relevance for infectious and inflammatory disease
conditions has just begun to evolve. Recent studies highlight an emerging and complex role for MDSCs in
pulmonary diseases. In this review, we discuss the potential contribution of MDSCs as biomarkers and
therapeutic targets in lung diseases, particularly lung cancer, tuberculosis, chronic obstructive pulmonary
disease, asthma and cystic fibrosis.
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Myeloid-derived suppressor cells

Definition

Suppressive myeloid cells were initially identified more than three decades ago in patients with cancer [1-3].
Later on, these cells were uniformly termed as myeloid-derived suppressor cells (MDSCs) [4] and defined by
1) their myeloid origin and 2) their ability to suppress T-cell responses. Despite a plethora of studies on
MDSCs in mice and men, the precise haematopoietic origin and lineage-association still remain a matter of
debate [5, 6]. Broadly accepted is the notion that MDSCs stem from immature myeloid cells (IMCs) and can
be subdivided into granulocytic/neutrophilic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs).
Current MDSC concepts suggest that differentiation of IMCs into mature granulocytes, macrophages or
dendritic cells (DCs) in bone marrow is skewed towards MDSCs in cancers [7]. While tumour-derived factors,
such as granulocyte/macrophage colony-stimulating factor (GM-CSF), have been proposed to induce MDSCs
in malignancies, the signals that drive MDSC generation in non-malignant infectious and inflammatory
conditions remain incompletely understood [7, 8]. MDSCs are not defined as a single subset of cells, but
rather represent a group of phenotypically heterogeneous myeloid cells that share a common biological
activity. Human MDSCs have been described to commonly express the myeloid markers CD11b and CD33 as
well as CD66b/CD15 for G-MDSCs and CD14 for M-MDSCs [9]. Murine MDSCs express the surface markers
CD11b and Gr1 and lack the expression of cell-surface markers that are specific for macrophages or DCs [10].
Sub-phenotyping divides murine MDSCs into monocytic (Ly-6G'°*CD11b*Ly-6C""SSC'*") and
granulocytic/neutrophilic (Ly—6GhighCDl1b+Ly-6Ci"te"“ed) subsets [7, 11].

Expansion

MDSCs have been reported to expand in malignant, infectious and autoimmune conditions [7, 8]. The
factors driving MDSC expansion comprise a broad variety of pro-inflammatory factors, including
interferon (IFN) v [12-14], cyclooxygenase (COX) 2, stem-cell factor and prostaglandin E (PGE) [15, 16],
GM-CSF [17], transforming growth factor (TGF) B [18-21], and interleukin (IL) 1B [22]. Signal
transducer and activator of transcription 3 (STAT3) is regarded as the main transcription factor that
regulates the expansion of MDSCs. STAT3 activation increases survival and proliferation of myeloid
progenitor cells and regulates MDSC expansion through inducing the expression of SI00A8 and S100A9
proteins [23, 24]. The combination of IL-6 and GM-CSF has been identified to generate MDSCs from
both human and murine immune cells [25, 26]. Beyond GM-CSF and IL-6, microbial factors have been
described to induce MDSCs. Particularly, the opportunistic bacterium Pseudomonas aeruginosa was found
to potently induce MDSC generation through flagellin [27]. Moreover, fungal infections with Aspergillus
fumigatus and Candida albicans induced a distinct subset of MDSCs through the pattern recognition
receptor Dectin-1 and its downstream adaptor protein caspase recruitment domain-containing protein 9,
which further involves the generation of reactive oxygen species (ROS) as well as caspase-8 activity and IL-1
production [28]. The retinoblastoma gene was found to regulate M-MDSC differentiation towards
G-MDSCs in tumour-bearing mice [29]. Under hypoxic conditions in the tumour microenvironment,
MDSCs suppress both antigen-specific and non-specific T-cell activity via hypoxia-inducible factor (HIF)
lo [30]. HIF-1ow also redirects MDSCs differentiation toward tumour-associated macrophages, which
further supports the immune-suppressive network in the tumour microenvironment [30]. MDSCs have
been reported to have a shorter lifespan in comparison to their counterparts, granulocytes and monocytes,
in tumour-free mice mediated by tumour necrosis factor (TNF)-related apoptosis—induced ligand receptors
and endoplasmic reticulum stress [31]. LPS and IFN-y treatment in combination has been shown to trigger
the expansion of splenic myeloid precursors into functionally suppressive MDSCs, blocking their
development into DCs [32]. In addition, it was reported that G-MDSCs are expanded in neonatal cord
blood and efficiently modulate innate and adaptive immune responses by suppressing T and natural killer
(NK) cell responses [33]. These neonatal cord blood MDSCs may weaken cellular anti-microbial host
defence responses and may contribute to the increased lung infection susceptibility in neonates.

Function
The mechanisms listed below have been implicated in MDSC-mediated suppression of T-cell function:

Reactive oxygen species

ROS have been implicated in MDSC-derived T-cell suppression as common mechanism in neoplastic
conditions, inflammation and microbial infections [34]. MDSCs in both tumour-bearing mice and patients
with cancer produce ROS and inhibition of ROS production diminished the suppressive effect of MDSCs
[35-38]. It has been further shown that ligation of integrins, expressed on MDSCs, contribute to increased
ROS production following the interaction of MDSCs with T-cells [39]. Several cytokines, such as TGE-B,
IL-6, and GM-CSF, have been described to induce the production of ROS by MDSCs [40].
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Arginase, nitric oxide synthase and nitric Oxide

Arginase (ARG) 1 and inducible nitric oxide synthase (iNOS) are involved in L-arginine metabolism.
iNOS generates nitric oxide (NO) from L-arginine, and arginase converts L-arginine into urea and
L-ornithine. MDSCs express high levels of arginase and iNOS, and utilise these enzymes to deprive
arginine and, thereby, inhibit T-cell function [41-43]. The shortage of L-arginine inhibits T-cell
proliferation by decreasing T-cellular CD3{ expression [44] and inhibiting the upregulation of the
cell-cycle regulators cyclin D3 and cyclin-dependent kinase 4 [45]. On the other hand, NO suppresses
T-cell function through inhibition of Janus kinase 3 and STAT5 in T-cells [46], inhibition of MHC class II
expression [47] and the induction of T-cell apoptosis [48].

Peroxynitrite

Peroxynitrite is one of the most powerful oxidants, and is a product of a chemical reaction between NO and
superoxide anion (O;). Peroxynitrite induces the nitration and nitrosylation of the amino acids cysteine,
methionine, tryptophan and tyrosine. Increased levels of peroxynitrite are associated with tumour
progression in many types of cancer [49-54], which has been linked with T-cell unresponsiveness.

Induction of regulatory T-cells
MDSCs were found to promote the development of CD4"'CD25"FOXP3" regulatory T-cells (Tregs), an effect
that required the activation of tumour-specific T-cells and the presence of IFN-y and IL-10 [55, 56].

Subset-specific mechanisms:
The two main subsets of MDSC employ different mechanisms to suppress T-cell proliferation. The
G-MDSC expresses high levels of ROS and low levels of NO, whereas the M-MDSC conversely expresses
low levels of ROS and high levels of NO, while both subsets express arginase [57]. The suppressive activity
of the G-MDSCs was shown to be ARG1-dependent, in contrast to the STAT1- and iNOS-dependent
mechanism of M-MDSCs [58].

Non-T-cell related mechanisms of suppression

While initially described as merely T-cell suppressive, emerging evidence suggests that MDSCs also interact
with and modulate the function of other immune cells, particularly including macrophages [59], NK cells
[60, 61], and Tregs [61]. Moreover, MDSCs, tumour-associated macrophages (TAMs) and DCs have been
reported to interact and to cross-promote their immunosuppressive activities within the tumour
microenvironment [62]. MDSCs in the tumour microenvironment were described to rapidly differentiate
into TAMs through a HIF-1o. mediated mechanism [31]. MDSCs, in turn, producing high levels of IL-10,
downregulate macrophage IL-12 production, promote TAMs and macrophage M2 polarisation and facilitate
the development of Tregs [59, 63]. Furthermore, regulatory DCs (regDCs) have been described in cancer
contexts as distinct DC subpopulation, which directly inhibit effector T-cells and indirectly induce or activate
Treg cells and MDSCs [64]. Mechanistically, the immunosuppressive effects of regDCs were found to be
mediated through IL-10, TGF-B, COX-2, iNOS, arginase and indoleamine 2,3-dioxygenase (IDO) [65-67].

MDSC plasticity/fibrocytic MDSCs

Recent studies suggest that Gr1* myeloid-derived monocytic cells and MDSCs can transdifferentiate into
extracellular matrix (collagen type I)-producing fibrocytes, a mechanism involving CD4" T-cells, IL-2,
IL-4, IFN-y and TNF, GM-CSF/G-CSF, Kruppel-like factor 4 and fibroblast-specific protein 1 [68-70].
Fibrocytic MDSCs were found to interact with activated T-cells in a cell contact dependent manner,
resulting in the production of IDO and leading to Treg expansion [69]. Fibrocytes can migrate into the
tumour stroma microenvironment and further differentiate into myofibroblasts and promote
tumorigenesis [71, 72] as well as metastasis [73]. Targeting fibrocytic MDSCs could represent a strategy to
prevent the formation of the pre-metastatic niches and subsequently suppress metastasis formation.

Other mechanisms

Less established mechanisms used by MDSCs to suppress immune responses include: 1) upregulation of
cyclooxygenase 2 and PGE, [16]; 2) secretion of TGF-B [22]; and 3) sequestering cysteine as well as
limiting the availability of cysteine, which is an essential amino acid for T-cell activation and proliferation
[74]. Several studies demonstrate that the immunosuppressive functions of MDSCs require cell-cell contact,
suggesting that MDSCs act through cell-surface receptors and/or the release of short-lived paracrine
mediators [7]. MDSCs produce the anti-inflammatory cytokine IL-10 and dampen both CD4" T-cells and
NK cell responses [7, 75, 76], while promoting the expansion of Treg [63] and M2-like macrophages [59].

MDSCs in lung diseases
Some of the different lung diseases in which MDCs play a role and the mechanisms that are used are
shown if figure 1.
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Lung cancer and lung metastasis

T and NK cells are essential for tumour elimination in the lung [77]. Accordingly, factors that regulate their
activity are of high interest for lung cancer treatment strategies. Accumulating evidence suggest that MDSCs
are responsible for inhibiting host T-cell activity against tumour-associated antigens and consequently
impair the effectiveness of anti-cancer immunotherapeutic approaches [78]. MDSCs numbers were found to
be associated inversely with responsiveness to chemotherapy and positively with shorter survival in patients
with lung cancer [79, 80]. Several studies support the concept that MDSCs dampen T-cells in lung cancer
through direct contact and through mechanisms involving a plethora of mediators and mechanisms, such as
iNOS, ARGI, TGF-B, IL-10 and the induction of Tregs [55, 75, 81-86]. MDSCs are recruited to the tumour
site by the CC chemokine ligand (CCL) 2, CXC chemokine ligand (CXCL) 12, and CXCL5 [87]. The
tumour microenvironment stimulates MDSCs to acquire immunosuppressive properties, which are mediated
through STAT1, STAT3, STAT6 and nuclear factor kB transcription factors [7]. Activated MDSCs, in turn,
produce ARG1, iNOS2, IDO, NADPH oxidase and immunosuppressive cytokines that have the potential to
inhibit cytotoxic T lymphocytes, DC, and NK cells as well as expand CD4"CD25 FoxP3" Tregs [88, 89].

Many tumour types show an organ tropism of metastatic outgrowth, which was first proposed by Stephen
Paget’s seed and soil theory in 1889 [90]. Colon cancer, as an example, induces predominantly metastasis in
the lung. A decade ago KarLaN et al. [91] first described the concept of the premetastatic niches appearing in
the lung as target organ. Signalling factors and cytokines of the primary tumour, e.g. vascular endothelial
growth factor, placental growth factor , lysyl oxidases, and TNF or TGF-B, lead to the recruitment of
immature bone marrow derived cells, which mainly consist of G-MDSCs, and form pre-metastatic niches in
organs distinct from the location of the primary tumour. Within the pre-metastatic niche the main drivers
for the infiltration of circulating CXC receptor (CXCR) 4" tumour cells are the remodelling of the
extracellular matrix by matrix metalloproteinase 9 (MMP9), expression of the adhesion molecule fibronectin,
pro-inflammatory S100A8/9 signalling and finally the release of the chemokine stromal cell-derived factor 1,
the agonist for CXCR4 [91]. Also hypoxia of the primary breast tumour accompanied by angiogenesis
signalling promotes the infiltration of G-MDSCs with potent immunosuppression of NK cells [92].

Asthma Cystic fibrosis

P. aeruginosa

NN

~

COPD Tuberculosis

FIGURE 1 The role of myeloid-derived suppressor cells in lung diseases. In response to allergens (asthmal),
cigarette smoke (chronic obstructive pulmonary disease (COPD)), P. aeruginosa bacteria (cystic fibrosis) or
Mycobacterium tuberculosis bacteria (tuberculosis), myeloid-derived suppressor cells (MDSCs) accumulate in
the lungs and cooperate with regulatory T-cells (Tregs) to suppress T-helper type 2 (Th2) cells or Th17-driven
inflammation. In tuberculosis, MDSCs phagocytose the mycobacteria and dampen surrounding T-cell
responses, thereby supporting immune-evasion.
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Data from animal lung cancer models showed that COX-2 is involved in MDSC regulation through the
production of PGE2 and ARG [43]. Srivastava et al. [93] demonstrated that Snail, an activating
transcription factor in epithelial-mesenchymal transition, induces tumour growth and metastasis by
increasing  MDSCs via increasing intracellular expression of ARGl in murine lung tumour
microenvironment. In other murine models of lung cancer, targeting of MDSCs using antibodies
improved antitumor activity via enhancing effector and memory T-cell responses, as well as NK cell and
antigen-presenting cell activities [94-96]. Peripheral blood MDSCs levels were shown to correlate with a
higher tumour burden and a worse prognosis [97-99]. Several approaches have been pursued to eliminate
MDSCs in cancer, particularly abrogation of MDSCs using all-trans retinoic acid [100, 101], chemotherapy
(gemcitabine, 5-fluoro-uracil) [102, 103], MMP9 inhibition (amino-biphosphonates) [104], MDSC
proliferation inhibitors such as tyrosine kinase inhibitors (sunitinib and sorafinib) [97, 105, 106], MDSC
recruitment inhibitors (CXCR2 antagonists) [109], MDSC function/activation inhibitors such as COX-2
inhibitors [16, 43, 108] and phosphodiesterase-5 inhibitors (sildanefil) [109]. Another novel approach to
abrogate MDSCs, so called “peptibody” treatment showed complete depletion of blood, splenic, and
intratumoural G- and M-MDSCs in tumour bearing mice, without affecting pro-inflammatory immune
cell types [110]. Based on these studies, the translational and therapeutic potential of targeting MDSCs, in
combination with conventional therapies, could be a promising approach for future anti-cancer therapy in
human patients. Overall, the development of novel therapeutic agents that eliminate the activity of MDSCs
in human lung cancer should accelerate our understanding of their biological role within the tumour
microenvironment.

Asthma

CD11b*Gr1™F4/80*MDSC-like cells were found to accumulate in allergic asthma and to suppress lung
DC-mediated reactivation of primed Th2 cells in a toll-like receptor (TLR) 4- and MyD88-dependent
fashion, mediated by IL-10 and ARGI [75, 111]. It has been further shown that tumour-derived MDSCs
suppress Th2-dominant inflammation in asthmatic mice, reduce recruitment of inflammatory cells and
suppress production of IgE and Th2 cytokines in a TGF-Bl dependent manner [112]. The chemokine
CCL2 was found to recruit MDSCs into lung tissues in airway inflammation [112]. Aspirin treatment
dampened the accumulation of G-MDSCs in the inflamed lung accompanied by increased Th2 airway
responses [113]. It has further been demonstrated that COX and its product, PGE,, play an important role
in the regulation of activation and accumulation of MDSCs through PGE, and PGE, receptors [113, 114].
MDSCs and IL-10 levels significantly increased and negatively correlated with IL-12 levels during the onset
of asthma in both human and mice. IL-10 not only suppressed the production of pro-inflammatory factors
by macrophages, but also reduced cytotoxic effects and decreased NO production. Therefore, it is proposed
that MDSCs play a dual role in asthma by upregulating anti-inflammatory IL-10 and downregulating
pro-inflammatory IL-12 [76]. In a different study, MDSCs enhanced mast cell-mediated secretion of several
inflammatory cytokines, including TNF, IL-6, IL-13, macrophage inflammatory protein-lo. and monocyte
chemoattractant protein-1. The mutual interaction of MDSCs and mast cells enhanced the activities of each
cell type, resulting in exacerbated inflammation and airway hyperresponsiveness [115]. Three different
populations of CD11b'Ly-6G" myeloid cells infiltrated the lung in a mouse model of allergic airway
inflammation where they differentially generate the reactive free radicals NO and O;. The Ly-6C'Ly-6G~
subset (predominant NO producer) and the Ly-6C*Ly-6G" subset were found to suppress T-cell
proliferation. In contrast, the O3 that generates the Ly-6C Ly-6G" subset enhanced T-cell responses [116].
Superoxide-producing myeloid-derived regulatory cells (MDRCs), present in high numbers in the airways
of patients with mild asthma or chronic obstructive pulmonary disease (COPD), but not in healthy
controls, were, on the other hand, found to enhance proliferation of CD4" T-cells [117].

COPD

NO producing MDRSCs were found in the airways of patients with mild asthma, but not in COPD
patients or healthy control individuals and, were found to suppress activated CD4"™ T-cells [117]. Smoking
upregulated and activated circulating MDSCs in COPD patients, but not in smokers with normal lung
function [118]. In COPD patients the MDSC activation was accompanied by down-regulation of the T-cell
receptor { chain expression in T-cells [118]. In addition, it has been shown that MDSCs were elevated in
the bone marrow, spleens, and lungs after 4 months of cigarette smoke exposure, while this was paralleled
by decreased pulmonary DCs [119]. However, these phenotypic MDSCs lacked immune suppressive
activity, and thus were not bona fide MDSCs [119]. In a further study, MDSCs were also increased in
patients with COPD and correlated with elevated levels of Tregs, which is in agreement with studies that
suggest reciprocal control of these two cell types [120]. In summary, these studies suggest that the
accumulation of MDSCs in COPD may underlie the blunted immune response observed in COPD.
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Tuberculosis

Development of active tuberculosis (TB) is known to correlate with impaired T-cell responses, but the
underlying immune mechanisms remained incompletely understood [121-125]. Both patients with acute
(household exposure within 3 months) and chronic TB were recently described to show significantly
higher frequencies of MDSCs that inhibited functions of CD4" and CD8" T-cells, including T-cell
proliferation, altered T-cell trafficking as well as production of IL-2, IFN-y and TNF [126]. The frequency
of CD37CD244™¢" cells with MDSC phenotypes were significantly higher in active TB patients and were
inversely associated with the activation and functionality of CD4" and CD8" T-cells [127]. In murine
experimental pulmonary TB, MDSCs readily phagocytosed Mycobacterium tuberculosis, and released both
pro-inflammatory (IL-6, IL-lo) and immunomodulatory (IL-10) cytokines, while retaining their
suppressive capacity [128]. Excessive MDSC accumulation in lungs correlated with elevated surface
expression of IL-4Ro and increased TB lethality, whereas targeted depletion of MDSCs ameliorated disease
in this animal TB model [128]. In summary, these findings indicate that MDSCs accumulate in lungs
during pulmonary TB and play a dual role in host-pathogen interaction: MDSCs phagocytose and harbour
M. tuberculosis bacteria intracellularly, providing a cellular shelter, while simultaneously dampening
surrounding hostile T-cell responses.

Pulmonary hypertension

Pulmonary hypertension is a progressive syndrome with dysregulated inflammatory processes [129].
Immunohistochemical analysis of lung sections from patients with pulmonary hypertension indicated that
immature DCs are present in peribronchovascular regions of vascular remodelling [130]. In a rat model of
monocrotaline-induced pulmonary hypertension, DCs with immature myeloid phenotype were recruited
to remodelled vessels [130]. In addition, monocyte-derived DCs from patients with pulmonary
hypertension were defective in their ability to stimulate T-cells in an allostimulatory mixed-leukocyte
reaction assay. In this respect, abnormalities of T lymphocyte subsets have been documented in patients
with pulmonary hypertension [131, 132]. In pulmonary hypertension patients, circulating activated MDSC
numbers were significantly increased in comparison to control subjects and correlated with increasing
mean pulmonary artery pressure [133]. A direct mechanistic role for MDSCs in pulmonary hypertension
and inflammation-associated vascular remodelling has not yet been defined.

Cystic fibrosis

Cystic fibrosis (CF) patients are impaired in eradicating P. aeruginosa infections and show skewed T-cell
proliferation and immune responses, but the underlying reasons remained poorly understood [134-136].
Recently, it has been shown that G-MDSCs accumulate in CF patients, particularly in patients chronically
infected with P. aeruginosa and correlate with CF lung disease activity [28]. Flagellated P. aeruginosa
induced MDSC generation, corresponding to TLR5 surface expression on G-MDSCs. Moreover, G-MDSCs
in CF patients were further characterised by an upregulation of the chemokine receptor and
HIV-coreceptor CXCR4 on the surface of MDSCs. Functionally, both CF patient-isolated and
flagellin-induced MDSCs suppressed T-cell proliferation and modulated Th17 cells, as key antibacterial
T-cell populations in CE. Percentages of circulating G-MDSCs correlated with pulmonary function in CF
patients chronically infected with P. aeruginosa. MDSCs could, therefore, represent a novel therapeutic
target in CF patients, particularly in patients chronically infected with P. aeruginosa [26].

Pulmonary infection

Efficient innate host defence is crucial for the elimination of invading pulmonary pathogens [137, 138],
but uncontrolled immune activation leads to collateral tissue damage. Neutrophilic cells that are rapidly
recruited to the site of infection produce ROS and proteases to clear infection. However, due to a relatively
short life span, neutrophils rapidly undergo apoptosis, secondary necrosis or neutrophil extracellular trap
formation at the pulmonary site of infection. MDSCs have been described to efficiently efferocytose
apoptotic neutrophils, mediated by IL-10 [139]. Clearance of dead neutrophils by MDSCs may, therefore
help to resolve lung inflammation, preventing lung injury and ultimately restore tissue homeostasis.
Studies in Stat1™~ mice showed that bacterial infection significantly increased pulmonary MDSCs, while
decreasing neutrophils [139]. These observations suggest that increasing MDSCs via STAT1 inhibition in
combination with effective antibiotic therapy may be beneficial in the context of non-resolving bacterial
pneumonia. On the other hand, it has been shown that expansion of MDSCs and absence of invariant NK
T-cells in influenza A infection suppresses influenza-specific immune responses [140]. These paradoxical
effects in viral and bacterial infection may be due to different MDSC kinetics and/or downstream
responses [139, 140]. MDSCs accumulate in the lungs during pneumocystis pneumonia (PCP) [141].
At the pulmonary site, MDSCs interact with alveolar macrophages through programmed cell death protein
1 and programmed death-ligand 1, leading to macrophage suppression through histone modification and
DNA methylation of the PU.1 gene, finally resulting in PU.1 downregulation. MDSCs employ the same
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mechanism to interact with monocytes, leading to PU.1 downregulation and inhibition of their
differentiation into alveolar macrophages, resulting in decreased numbers and activity of alveolar
macrophages during PCP [142].

Pulmonary inflammation

Exposure of mice to lipopolysaccharide (LPS) triggers the recruitment of a MDSC-like phenotype
(CDIIb*Ly6GimLy6CI°W/ “F4/80"CD80") into the lung [139], where they reside, in contrast to DCs, which
traffic readily to the lymph nodes [75]. LPS-induced lung MDSCs were further shown to blunt the ability
of pulmonary DCs to promote Th2 responses [75, 143-145]. It is speculated that lung MDSCs
compromise Th2 cell survival, thereby reducing the size of the memory T-cell pool [75, 146, 147]. Thus,
collectively, it appears that an important effector function of TLR-induced MDSCs is not directed to the
lymph node to influence the development of adaptive immune functions, but rather to control local
pulmonary immune responses. Recent studies further suggest that TLR4 activation by LPS induces
GM-CSF and IL-6 production leading to STAT5 and STATS3 activation, which in turn drives MDSC
generation [82, 139, 148, 149]. At the cellular level, MDSCs induce Tregs [150] by increasing Foxp3
expression through an IL-10-, TGF-B- and ARG1-dependent mechanism [150]. It has been further shown
that glucocorticoids induce a distinct anti-inflammatory phenotype in mouse monocytes, which
phenotypically resemble MDSCs with respect to the expression of CD11b, Ly-6G and IL-4Ro. chain [151].

Conclusions and outlook

Emerging evidence suggests that MDSCs, as immuosuppressive myeloid cells, play a critical role in
malignant, infectious and inflammatory lung diseases, particularly lung cancer, TB, COPD, pulmonary
hypertension, asthma and CF. Amongst the MDSC subsets, granulocytic MDSCs appear to represent the
major population accumulating in pulmonary diseases. Pathways orchestrating MDSC generation,
recruitment, activation and suppressive functions are diverse and future studies are required to narrow
down the most relevant ones for therapeutic targeting approaches. Mechanistically, a more precise
understanding of how host- or pathogen-derived cues modulate MDSC generation and function will help to
develop tailored MDSC inhibitors for conditions where MDSC cause harm to the host, such as lung cancer
and pulmonary infection (for instance TB), where pulmonary MDSCs favour the survival of malignant cells
or pathogens. Conversely, adoptive cellular transfer or specific activation of MDSCs may represent an
attractive therapeutic strategy to dampen immune responses in the setting of immune over activation, as
found in allergic, autoimmune and auto-inflammatory pulmonary disease conditions. Findings from both
mouse models and human patients indicate a potential therapeutic role for vitamin A and D, tyrosine
kinase inhibitors, chemokine receptor antagonists, COX inhibitors and phosphodiesterase-5 inhibitors in
regulating MDSCs. Clinical interventional studies are the next consequent step to systematically assess the
safety and efficacy of these MDSC-interfering approaches in pulmonary diseases.
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