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10European Institute for Systems Biology and Medicine, Lyon, France. 11Erasmus University Rotterdam,
Institute of Health Policy and Management, Rotterdam The Netherlands. 12Erasmus University Rotterdam,
Institute of Medical Technology Assessment, Rotterdam, The Netherlands. 13Dept of Internal Medicine and
Clinical Nutrition, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. 14Centre for
Exercise and Rehabilitation Science, Leicester Respiratory Biomedical Research Unit, University Hospitals of
Leicester NHS Trust, Glenfield Hospital, Leicester, UK. 15Dept of Respiratory Medicine, Faculty of Medicine,
P.J. Safarik University, Kosice, Slovakia. 16L. Pasteur University Hospital, Kosice, Slovakia.

Correspondence: Annemie M. Schols, Dept of Respiratory Medicine, Maastricht University Medical Centre+,
PO box 5800, 6202 AZ Maastricht, The Netherlands. E-mail: a.schols@maastrichtuniversity.nl

ABSTRACT Nutrition and metabolism have been the topic of extensive scientific research in chronic

obstructive pulmonary disease (COPD) but clinical awareness of the impact dietary habits, nutritional

status and nutritional interventions may have on COPD incidence, progression and outcome is limited. A

multidisciplinary Task Force was created by the European Respiratory Society to deliver a summary of the

evidence and description of current practice in nutritional assessment and therapy in COPD, and to provide

directions for future research. Task Force members conducted focused reviews of the literature on relevant

topics, advised by a methodologist. It is well established that nutritional status, and in particular abnormal

body composition, is an important independent determinant of COPD outcome. The Task Force identified

different metabolic phenotypes of COPD as a basis for nutritional risk profile assessment that is useful in

clinical trial design and patient counselling. Nutritional intervention is probably effective in undernourished

patients and probably most when combined with an exercise programme. Providing evidence of cost-

effectiveness of nutritional intervention is required to support reimbursement and thus increase access to

nutritional intervention. Overall, the evidence indicates that a well-balanced diet is beneficial to all COPD

patients, not only for its potential pulmonary benefits, but also for its proven benefits in metabolic and

cardiovascular risk.
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Introduction
Nutrition has been the topic of extensive scientific research in chronic obstructive pulmonary disease

(COPD). This article will examine the impact that dietary habits, nutritional status and nutritional

interventions may have on the incidence, progression and outcome of COPD. The article aims to raise

awareness about diet and nutrition in COPD, and to deliver a resource that will assist clinicians and

academics in providing high-quality nutritional assessment and care to individuals with COPD.

The topics discussed range from understanding altered metabolism and related therapeutic targets in

COPD, to improving dietary habits, outcome and cost-effectiveness of nutritional interventions including

recommendations for future translational, epidemiological and clinical research. Topic selection was based

on scientific importance and clinical relevance to ensure the article would be of interest to members of the

European Respiratory Society (ERS).

Methods
A multidisciplinary Task Force was created by the ERS, consisting of 12 members representing a broad

range of respiratory clinicians involved in delivery of care to individuals with COPD, basic scientists,

nutritional caregivers specialised in practical challenges of dietary intervention, epidemiologists, and a

health economist. Several representatives were also members of the European Society for Clinical Nutrition

and Metabolism (ESPEN) in order to guarantee optimal alignment between this ERS statement and updated

ESPEN guidelines on nutrition in COPD. Conflicts of interest were dealt with according to ERS standard

procedures. This document was created by combining a firm evidence-based approach and the clinical

expertise of the Task Force members. However, a formal grading of the evidence was not performed and,

therefore, this document does not contain recommendations for clinical practice. The process adopted for

this statement was agreed by all Task Force members. A statement is not a systematic review of the literature

but the method by which literature was identified and incorporated for this statement was agreed before

work commenced on the document. A hierarchy of evidence was agreed upon, and data from systematic

reviews and well-designed randomised controlled trials were, accordingly, given priority in the evaluation

process. Members of the Task Force reviewed the scientific evidence relevant to the delegated subject area.

Publications that were in print between 2006 and 2013 were selected for further examination. Systematic

reviews and randomised controlled trials from Medline/PubMed, EMBASE, the Cochrane Central Register

of Controlled Trials, CINAHL and the Cochrane Collaboration were collected. In addition, the references of

the selected papers were scrutinised for further relevant evidence. Each topic was presented by the assigned

author at the initial meeting in Lausanne, Switzerland (June 2012), and drafts were presented and discussed

during meetings in Maastricht, the Netherlands (December 2012), and Barcelona, Spain (September 2013).

The final document was drawn together by the chairs of the Task Force. The draft manuscripts were

reviewed by all Task Force members to ensure appropriateness and relevance, and the final document was

accepted by all Task Force members.

Scope
COPD is an important global health problem. The disease is characterised by persistent airflow obstruction

resulting from inflammation and remodelling of the airways, and may include development of emphysema.

Furthermore, systemic disease manifestations and acute exacerbations influence disease burden and

mortality risk [1]. Extending the classical descriptions of the ‘‘pink puffer’’ and ‘‘blue bloater’’, recent

unbiased statistical approaches [2, 3] support the concept that body weight and body composition

discriminate pulmonary phenotypes, and are predictors of outcome independent of lung function

impairment. Incorporation of body composition into nutritional assessment has been a major step forward

in understanding systemic COPD pathophysiology and nutritional potential. While initially being

considered an indicator of inevitable and terminal progression of the disease process, there is now

convincing evidence that unintended weight loss is not an adaptive mechanism to decrease metabolic rate in

advanced COPD [4] but an independent determinant of survival, arguing for weight maintenance in patient

care. An important role of muscle loss and decreased muscle oxidative metabolism in impaired physical

performance has been demonstrated, providing new evidence for nutritional supplementation as an adjunct

to exercise training, not only confined to advanced disease but also in earlier disease stages. In addition, a

pivotal role of osteoporosis, visceral adiposity and poor dietary quality in COPD risk and progression has

emerged, which positions dietary awareness and intervention as integral part of disease management, from

prevention to chronic respiratory failure.

Nutritional assessment
In order to develop and evaluate effective prevention and intervention strategies, stratification of the patient

population into specific metabolic phenotypes is required. While it is accepted that body weight and body
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composition variables represent a continuous spectrum, clear definitions and reference values for

phenotypes that predict outcome and response to treatment have been developed over the past decade, as

shown in table 1. These different conditions reflect a complex interaction between the effects of

(epi)genetics, lifestyle and disease triggers on muscle, bone and adipose tissue. Numerous statement

documents focus on individual metabolic phenotypes as intervention target [6, 7]. In view of the

coexistence of different metabolic phenotypes during the course of COPD, members of this Task Force have

established a nutritional risk profile, based on prospective assessment of body weight (change) and body

composition (fig. 1). This nutritional risk stratification diaphragm will be useful in clinical trial design and

in individually tailoring nutritional management. In this risk profile, an adapted World Health

Organization classification of body mass index (BMI) is used based on the lowest standardised rate of

death from recent population studies [8, 9]. As a rule of thumb, involuntary weight loss .5% during the

last 6 months is considered clinically significant, taking natural variations into account. Recent weight loss

can be assessed by patient recollection, although standardised weight measurements at regular intervals by

caregivers or self-monitoring are often incorporated and more informative. Weight changes and BMI

classification do not take body compositional shifts, including fat mass and distribution, lean mass and

distribution, and bone mineral density (BMD) into account. To distinguish between low and normal fat-

free mass (FFM) (FFM 5 lean mass + BMD), body composition needs to be assessed. Appropriate

measurements of body composition and surrogate markers in research and clinical practice are presented in

table 2. In normal to underweight COPD patients, age- and sex-adjusted fat-free mass index (FFMI)

(FFMI 5 FFM/height2) ,10th percentile is defined as abnormally low based on well-established adverse

effects of low FFMI on physical performance and survival. In the age range of most Caucasian COPD

patients at risk, this corresponds to a FFMI ,17 kg?m-2 for males and ,15 kg?m-2 for females as clinically

useful proxies in normal to underweight patients with COPD [10]. Sarcopenia is characterised by low

skeletal muscle index (SMI) (SMI 5 lean appendicular mass (assessed by dual-energy X-ray absorptiometry

(DEXA))/height2), i.e. equal to or below the mean minus two standard deviations of that of healthy persons

between 20 and 30 years of age of the same ethnic group [11]. Sarcopenia imposes additional risk of skeletal

muscle weakness in an increasing proportion of older and overweight patients. An important difference

between the risk stratification diagram and conventional nutritional risk scores, such as the Malnutrition

Universal Screening Tool [12] or Mini Nutritional Assessment [13], is that the latter are primarily focused

on malnutrition and do not take abnormal body composition into account.

Metabolic phenotypes and nutritional risk profile in COPD
Recent, large population studies have revealed that the age-standardised rate of death from any cause was

lowest among participants with a BMI of 22.5–24.9 kg?m-2 and of 20–25 kg?m-2 in analyses restricted to

those who never smoked [8, 9]. In patients with moderate to severe airflow obstruction, a BMI ,25 kg?m-2

was consistently associated with increased mortality risk relative to overweight and even obese patients

[14–16]. This prognostic advantage of increased BMI in COPD, also referred to as the ‘‘obesity paradox’’,

could be related to the direct effect of adipose tissue on lung mechanics (e.g. relative reduction in static

volumes in obese COPD patients [17]). However, it might also be an epiphenomenon of other, yet

unknown disease characteristics that confer both a reduced mortality risk and preserved fat mass and/or

FFM. Furthermore, it is not yet clear whether it is excessive fat or preserved FFM that contributes to the

survival advantage in COPD, as low FFMI (,10th percentile), independent of BMI and fat mass, is a strong

predictor of mortality [18]. The prevalence of underweight in COPD increases with disease severity [18] and

is clearly associated with the presence of emphysema [19]. In normal to overweight patients, a low FFMI

implies a proportionally high fat mass index. Furthermore, fat mass may be redistributed from

subcutaneous to visceral adipose tissue, which has been associated with increased cardiovascular risk in mild

to moderate COPD [20]. COPD patients with underweight or low FFM are more prone to loss of BMD

than overweight patients [21]. DEXA is most appropriate for combined screening of osteoporosis, FFM and

fat mass. Although distinction between abdominal visceral and subcutaneous fat mass requires more

advanced imaging technologies (e.g. computed tomography and magnetic resonance imaging), a clinically

useful estimate can be derived by DEXA.

Pathophysiology of abnormal body composition and targets for nutritional
intervention
Understanding the pathophysiology and cross-talk of muscle loss and adiposity in COPD is essential for

the development of targeted nutritional interventions to address specific metabolic phenotypes. A

comprehensive overview of this pathophysiology is beyond the scope of this article. Hence, we present a

brief summary relevant to alterations in nutritional status and nutritional intervention. For a more detailed

account of skeletal muscle wasting in COPD, the reader is directed to the recently updated American

Thoracic Society/ERS statement on lower limb muscle dysfunction in COPD [22].
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Fat loss
Loss of body weight and fat mass occurs when energy expenditure exceeds energy availability. Eating per se

is an activity that can adversely affect haemoglobin saturation and increase dyspnoea in patients with severe

COPD [23]. Ageing is also a contributing factor to reduced dietary intake in COPD due to symptoms (e.g.

loss of taste, poor dentition, dysphagia, poor chewing and swallowing ability, poor appetite, or food

aversion), social problems (e.g. living or eating alone, or poverty) and inability to self-feed [24]. Anorexia is,

however, not the primary trigger of a disturbed energy balance in clinically stable disease, as generally, a

normal appetite to increased dietary intake is reported in underweight patients [25, 26]. Moreover, while

the normal response to semi-starvation is a reduced metabolic rate and depressed whole-body protein

turnover, weight-losing COPD patients may display elevated resting energy expenditure and increased

whole-body protein turnover [27]. Furthermore, in addition to an increased cost of ventilation due to

abnormal pulmonary mechanics, a higher ATP cost of muscular contraction [28] may contribute to

decreased mechanical efficiency of lower limb exercise [29] and elevated daily energy requirements in some

COPD patients [30]. In support of this, weight gain after lung volume reduction surgery was associated with

improved lung function and reduced work of breathing [31]. Collectively, this indicates a hypermetabolic

TABLE 1 Metabolic phenotypes

Metabolic phenotype Definition Clinical risk

Obesity BMI 30–35 kg?m-2 Increased cardiovascular risk
Morbid obesity BMI .35 kg?m-2 Increased cardiovascular risk

Impaired physical performance
Sarcopenic obesity BMI 30–35 kg?m-2 and SMI ,2 SD below mean

of young M and F reference groups [5]
Increased cardiovascular risk

Impaired physical performance
Sarcopenia SMI ,2 SD below mean of young M and F

reference groups
Increased mortality risk

Impaired physical performance
Cachexia Unintentional weight loss .5% in 6 months

and FFMI ,17 kg?m-2 (M) or ,15 kg?m-2 (F)
Increased mortality risk

Impaired physical performance
Precachexia Unintentional weight loss .5% in 6 months Increased mortality risk

BMI: body mass index (weight/height2); SMI: appendicular skeletal muscle index (appendicular lean mass/height2); M: male; F: female; FFMI: fat-
free mass index (fat-free mass/height2).
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FIGURE 1 Nutritional risk stratification diagram. FFM: fat-free mass; BMI: body mass index.
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state that may contribute to weight loss if energy requirements are not fully met and provides a convincing

rationale for caloric supplementation to maintain or increase fat mass. Early concerns about adverse effects

of carbohydrate supplementation in COPD due to increased carbon dioxide production, resulting from

carbohydrate oxidation loading ventilation, have not been substantiated in more recent studies but were

only observed after hyperalimentation [32]; this is, in practice, unlikely to happen with oral nutrition,

especially in patients with poor appetite, and can easily be avoided by smaller meal portions well spread over

the day.

Muscle loss
Muscle mass is determined by the net balance of muscle protein synthesis and protein breakdown. There is

evidence for increased muscle protein degradation rate in cachectic COPD patients characterised by low

BMI and low FFMI [33]. Analyses of the effector pathways of protein degradation showed consistent

elevation of components of the ubiquitin 26S proteasome system [34] and enhanced autophagy [35].

Conversely, distal protein synthesis signalling cues (insulin-like growth factor I and phospho-Akt expression

levels) are mainly unaltered [34]. More research is required to exclude any impairment in protein synthesis

signalling (i.e. its responsiveness to catabolic triggers), but assuming this is not the case [36], stimulating

protein synthesis more proximally using nutritional intervention to counterbalance elevated proteolysis

may contribute to muscle mass maintenance in the presence of increased protein turnover in cachectic

patients. Nutritional intervention targeted at provision of sufficient amino acids to support protein

synthesis signalling could evoke a compensatory response to increases in proteolysis cues, obviously

presuming a positive energy balance [37]. Stimulation of protein synthesis depends on the availability of

amino acids in the blood stream. COPD patients with low FFM have low plasma levels of branched-chain

amino acids (BCAAs) compared with age-matched controls [38]. It is well-known that BCAAs, particularly

leucine, are able to stimulate muscle protein synthesis. The extraction of dietary nutrients, especially amino

acids, by the intestine has a critical influence on their availability to peripheral tissues and, therefore, on

whole-body amino acid requirements. Lower splanchnic extraction associated with an enhanced anabolic

response to a protein meal [39] was found in sarcopenic patients with COPD, which might be related to

compromised intestinal function [40]. Supplementation of soy protein with BCAAs altered inter-organ

metabolism even further in favour of the muscle compartment in COPD [41]. Further research is required

to investigate if the anabolic potential of high-quality protein is less in chronic respiratory failure or in the

cachexia-susceptible emphysematous phenotype, as the latter also exhibited a blunted whole-body protein

turnover after acute exercise [42]. Increased levels of oxidative stress have been consistently reported in the

skeletal muscle of COPD patients. Of signalling pathways sensitive to oxidative stress and involved in

muscle mass regulation, muscle biopsy analyses have suggested activation of FOXO (fork head box O),

MAPK (mitogen-activated protein kinase) and NF-kB (nuclear factor, k-light chain activator of B-cells).

TABLE 2 Appropriate measurements of body composition and surrogate markers in research and clinical practice

Variable Research Clinical practice

Fat-free mass/fat mass Deuterium dilution DEXA, single-frequency BIA
Anthropometry (sum of four skin folds)

Intracellular mass Deuterium dilution combined with bromide dilution Multifrequency BIA
Muscle mass CT

MRI
Biomarkers (i.e. D3-creatine dilution)

DEXA
Ultrasonography
Biomarkers (i.e. creatine height index)
Anthropometry (mid-arm muscle circumference)

Abdominal fat CT DEXA
Abdominal visceral fat MRI

Biomarkers (i.e. PAI-1)
Anthropometry (i.e. sagittal diameter and/or waist/hip

circumference)
Ultrasonography

Bone mass and density DEXA DEXA
HRCT

Muscle strength and related
physical performance

Isokinetic quadriceps strength
(Repetitive) magnetic stimulation
Timed up-and-go test
Stair-climb power test
Cycle ergometry

One-repetition maximum
Handgrip strength
Timed up-and-go test
Stair-climb power test

DEXA: dual-energy X-ray absorptiometry; BIA: bioelectrical impedance; CT: computed tomography; MRI: magnetic resonance imaging; PAI:
plasminogen-activator inhibitor; HRCT: high-resolution computed tomography.
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MAPK and NF-kB signalling is also initiated by inflammation and increased inflammatory cell infiltration,

and pro-inflammatory cytokine expression has indeed been reported in some studies. These catabolic

pathways (or upstream triggers such as oxidative stress and inflammation) may therefore be suitable targets

for nutritional modulation [34].

Bone mineral density loss
Osteoporosis is a skeletal disease characterised by low bone mass and microarchitectural deterioration with

a net increase in bone fragility and, hence, susceptibility to fracture [43]. Hip fractures are directly related to

falls, causing hospitalisation and excess mortality. Vertebral fractures more often occur silently and are

thought to result from routine activities such as bending or lifting. In patients with COPD, vertebral and rib

cage fractures may lead to increased kyphosis, reduced rib cage mobility and further reduction of

pulmonary function. COPD and osteoporosis often coincide. Prevalence data vary from 5% to 60%

depending on the diagnostic methods used, the population setting and the severity of the disease [44]. One

reason for this association is the presence of common risk factors such as ageing, smoking, underweight,

sarcopenia and physical or functional limitation. Additionally, systemic inflammation, the use of systemic

corticosteroids and the high prevalence of vitamin D deficiency, which are frequently observed in more

severe stages of COPD, unequivocally contribute to a further loss of bone and muscle mass [44, 46].

Observational studies also suggest that emphysema represents a particular phenotype that is associated with

musculoskeletal impairment but the underlying mechanisms remain unclear [47–49]. Bone tissue is

continuously renewed throughout life. After reaching a peak bone mass at the age of 25 to 30 years, bone

formation balances back to resorption with an annual loss of 0.5–1%. On the cellular level, remodelling and

bone renewal consist of an interaction between osteoblasts, cells producing osteoid protein matrix that

subsequently mineralises, and osteoclasts, which absorb bone and release calcium back from its stores. This

interaction is tightly regulated by NF-kB and its ligand (receptor activator of NF-kB (RANK)/RANK ligand

(RANKL) system) expressed on the surfaces of both cell types. Vitamin D plays a key role in the regulation

of calcium and bone homeostasis but other factors, including several proinflammatory cytokines, also act

on this pathway. Low 25-hydroxyvitamin D (25-OHD) levels stimulate the production of parathyroid

hormone, which, through the activation of the RANK/RANKL system, activates osteoclasts into bone

resorption, calcium release and subsequent stabilisation of blood calcium levels [50]. Significant

associations between low 25-OHD levels and BMD have been shown in different populations, including

COPD patients [46, 51]. Low 25-OHD levels are also associated with muscle weakness and increased risk of

falls, so that sufficient intake of vitamin D and calcium, in addition to lifestyle modifications (increased

physical activity, spending more time outside, smoking cessation and limited alcohol use), still composes

the basis of all prevention and treatment strategies of osteoporosis [52].

Adiposity
In patients with advanced disease, respiratory failure is the most common cause of death, with sarcopenia

and cachexia as important risk factors. In contrast, in patients with mild-to-moderate disease, the primary

cause of death is ischaemic cardiovascular disease, for which adiposity is an important lifestyle-induced risk

factor [53]. There is increasing evidence that adipose tissue in COPD patients with relative or absolute fat

abundance is a significant contributor to the systemic inflammatory load [54]. Abdominal visceral fat is

more strongly associated with cardiovascular risk than subcutaneous fat, which could be related to a higher

inflammatory capacity. In mild to moderate, nonobese COPD patients, a fat redistribution was shown

towards more abdominal visceral fat compared with controls, despite comparable total fat mass [20]. It is

yet unclear to what extent this redistribution reflects unhealthy lifestyle or is disease-induced and whether

the two act synergistically [55]. Obese COPD patients have increased dyspnoea at rest and poorer health

status compared with normal-weight patients, while static lung hyperinflation is reduced, irrespective of the

severity of disease [17]. The combined effects of obesity and COPD on exercise tolerance seem to depend on

the type of exercise (weight-bearing versus non-weight-bearing) that is performed. While peak cycling

capacity is preserved in obese COPD patients compared with nonobese patients, and dyspnoea ratings are

consistently lower during cycling in obese patients, the 6-min walk distance (6MWD) is reduced and the

degree of fatigue is increased in obese patients [56]. No studies have systematically investigated the effects of

weight loss interventions on adiposity, functionality and systemic inflammatory profile in patients with

COPD. Although weight maintenance after a short period of weight loss is reported as a major challenge in

other risk populations, even modest reductions in weight can reduce the cardiovascular disease risk through

improvements in body fat distribution [57]. A combination of dietary intervention and aerobic exercise

may achieve this goal best as aerobic exercise training improves insulin sensitivity, induces mitochondrial

biogenesis in skeletal muscle and also induces loss of visceral fat mass [55]. Feasibility and efficacy of this

approach, however, may be limited in advanced COPD by ventilatory restraints on exercise intensity.

Alternatively or as an adjunct, intervention with bioactive nutrients (e.g. polyphenols, polyunsaturated fatty
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acids (PUFAs) and vitamin B3) has been proposed to boost muscle mitochondrial metabolism and limit

ectopic fat accumulation [58], but this requires adequate clinical trials in COPD in the future.

Acute exacerbations
Weight loss and wasting of muscle and bone tissue may be induced or accelerated during severe acute

exacerbations requiring hospitalisation, due to convergence of different catabolic stimuli including

malnutrition [59], physical inactivity [60], hypoxia, inflammation [61] and systemic glucocorticoids [62].

Moreover, this may be a time when energy intake may be compromised by practical difficulties in providing

adequate nutrition due to breathlessness or other treatments such as noninvasive ventilation. Furthermore,

impaired responsiveness to signalling cues of muscle regeneration and protein synthesis may delay recovery

and increase the risk for readmission [63]. In the acute phase of respiratory exacerbations, loss of appetite

and reduced dietary intake are often experienced in concert with elevated systemic levels of the appetite-

regulating hormone leptin and pro-inflammatory cytokines [59, 61]. Next to nutritional risk screening and

early intervention in primary care, hospitalisations could be considered an additional opportunity for

detailed nutritional assessment and implementation of longer term nutritional management, as they

represent a period of heightened ‘‘nutritional risk’’ that may, in itself, require intensive nutritional therapy

[64]. The impact of such intensive regimes on clinical outcomes and underlying mechanisms is yet to be

clearly established.

Dietary management and nutritional supplementation
Due to the ubiquitous nature of nutrition and the multiple metabolic effects induced by each food, nutrient

or micronutrient, randomised clinical trials in this area face specific obstacles. By their nature, some

obstacles are difficult to resolve, such as having a placebo or proper blinding of food. Due to the multiple

metabolic impacts of nutrients, choosing a primary outcome and the determination of sample size are

particularly difficult. Nutritional research on single foods is also complex because it exploits a multitude of

bioactive compounds acting on an extensive network of interacting processes.

Treatment of weight loss in COPD
A patient who is in a negative energy balance and losing weight will need to increase their energy intake, as

additional reduction of energy expenditure is highly undesirable in COPD. A suitable energy- and protein-

enriched diet can be achieved by several small portions spread throughout the whole day [65]. The energy-

and protein-enriched diet often has a higher fat content (45% of total energy) than in recommendations for

healthy individuals. Due to the high proportion of fat, consideration needs to be given to the quality of the

fat, especially in choice of fat used for cooking, to minimise the proportion of saturated fat. It is generally

recommended in current guidelines that protein should provide 20% of the total energy intake.

Fortification products can be used to increase energy and protein content in different meals [66]. A dietician

is able to tailor the energy- and protein-enriched diet taking into account each subject’s eating habits,

lifestyle, symptoms, likes and dislikes. At low energy intakes, it can be hard to fulfil the needs for vitamins,

minerals and trace elements. Oral nutritional supplements (as powders, puddings or liquids) can be used to

supplement the diet when nutrient requirements cannot be satisfied through normal food and drink.

While the rationale for nutritional support to maintain or increase energy availability and muscle protein

synthesis in weight-losing and underweight COPD patients is compelling, randomised clinical trials

investigating the clinical efficacy are generally small and initial meta-analyses revealed small estimates of

effect only. The Cochrane review by FERREIRA et al. [67] was recently updated and now includes 17 trials

(632 participants) of o2 weeks of nutritional support (figs 2 and 3). The post-treatment values were

pooled for all outcomes and the changes from baseline scores (change scores) were pooled for primary

outcomes. The updated review also incorporated the Grading of Recommendations Assessment,

Development and Evaluation [90] approach to determine the quality of the evidence (i.e. risk of bias of

included studies, inconsistency of results, indirectness of the evidence, imprecision of the data and possible

publication bias). This increased body of evidence gives a clearer picture of the overall effects of nutritional

supplementation and the impact in specific COPD subgroups. Moderate-quality evidence (due to mixed

risks of bias) suggests that nutritional supplementation promotes weight gain among patients with COPD,

especially if undernourished. This was demonstrated using both pooled estimates: post-intervention and

change scores. Only the change scores were significant for the weight gain of the overall population (both

nourished and undernourished), but undernourished patients showed significant weight gain, regardless of

the method used. There was significant improvement in anthropometric measures (FFM, mid-arm muscle

circumference and triceps skin folds) (fig. 3), 6MWD, respiratory muscle strength (maximal inspiratory and

expiratory pressures) and overall health-related quality of life as measured by the St George’s Respiratory

Questionnaire in undernourished patients with COPD. The increase in 6MWD reached the minimal
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clinically important difference in severe COPD [91, 92].The quality of evidence supporting other outcomes

was low, mainly because of multiple risks of biases and imprecision of the data (due to small numbers). This

means that future research is very likely to impact on our confidence in the estimates of the effect and is

likely to change the estimates. Furthermore, a multicentre, phase III trial seems justified.

COLLINS and co-workers [93, 94] also published recent meta-analyses using different methods. They did not

include all of the same papers, but their findings were broadly in line with the Cochrane review. They also

included significant positive findings for total energy intake, and handgrip and quadriceps strength.

The results of recent systematic reviews and meta-analyses now suggest that nutritional supplementation

should be considered in the management of undernourished patients with COPD. Five out of 17 trials

included in the updated meta-analysis [67], specifically the trials that had FFM as an outcome, had

nutritional supplementation combined with exercise. It is likely that the benefits of supplementation will be

maximised if combined with exercise, although based on the current literature, the effects of nutrition and

exercise cannot clearly be distinguished, which is a subject for future research.

Undernourished

Nourished

DELETTER [68]#

EFTHIMIOU [69]#

FUENZALIDA [70]#

LEWIS [71]#

OTTE [72]
ROGERS [73]
SCHOLS [74]¶

SUGAWARA [75]
HOOGENDOORN [76], VAN WETERING [77–80]
WEEKES [66, 81]
RYAN [82], WHITTAKER [83]
Subtotal (95% CI)

Heterogeneity: Tau-squared 0.06; Chi-squared 11.21, df 10 (p=0.34); I2=11%
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FIGURE 2 Forest plot of comparison between nutritional supplementation and placebo or usual diet with change in weight (kg) as the outcome. df: degrees of
freedom. #: imputed standard error; ": depleted. Reproduced and modified from [67] with permission from the publisher.
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Nutrition as ergogenic aid
The importance of nutrition to enhance performance and training has long been recognised in the fields of

sports and athletics. There is evidence for the benefits of ensuring adequate carbohydrate and protein intake

(depending on the athletic discipline) in optimising performance [95] and evidence that some specific

nutrients (e.g. creatine, PUFAs and nitrate) may enhance physical performance [96–99]. Enhancing physical

performance is a key therapeutic goal in COPD and, therefore, there are theoretical reasons for

hypothesising that nutritional intervention might improve performance in this population or enhance the

outcome of exercise training, an intervention that is of proven clinical and physiological benefit in COPD.

Aerobic exercise training is of established efficacy in COPD but it remains uncertain whether the magnitude

of benefit is comparable to similar aged healthy subjects. Moreover, lower limb muscles in COPD are

characterised by a decreased proportion of type I muscle fibres associated with decreased levels of muscle

oxidative metabolic markers and nutrient sensing regulators of cellular energy state (e.g. peroxisome

proliferator-activated receptor (PPAR)-c coactivator 1, PPARs, AMP-activated kinase and sirtuins) [100].

These observations support the rationale for augmenting exercise training with nutritional therapies and

there is a limited number of trials investigating the impact of nutritional therapies on exercise performance

or training in COPD, as recently reviewed by Task Force members [97]. These involved a variety of

interventions including carbohydrate and fat-rich supplements [86], essential amino acids [101], whey

protein (rich in BCAAs) [89], creatine [102–104] and PUFAs (natural ligands of PPARs) [105]. The

literature is characterised by considerable heterogeneity in the nature of the intervention, the populations

enrolled and the exercise outcomes that were studied. Many studies were underpowered and most were

single-centre investigations. Early macronutrient studies involving fat-rich supplements did not suggest a

performance advantage in the intervention groups, but subsequent studies using a carbohydrate-rich

supplement and PUFAs suggested the outcome or exercise training might be enhanced in selected patients
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FIGURE 3 Forest plot of comparison between nutritional supplementation and placebo or usual diet with change in fat-free mass (FFM) (in kilograms) as the
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[86, 105]. Small pilot investigations have suggested potential benefits of whey protein and carnitine, but had

insufficient statistical power for wider conclusions to be drawn. Three trials have tested the effect of creatine

supplementation during exercise training in COPD with no consistent positive effect, as confirmed by a

subsequent systematic review and meta-analysis [106]. In a group of overall non-wasted COPD patients,

protein and carbohydrate supplementation after resistance exercise did not augment functional or

molecular exercise responses [107]. The question whether nutritional support can augment the performance

outcomes of exercise training and pulmonary rehabilitation remains largely unanswered.

Cost-effectiveness issues
Nutritional counselling and oral nutritional supplements compete with other treatments for a part of the

publicly funded healthcare budget; it is therefore important to assess their cost-effectiveness. There are

virtually no data on the economic implications of these interventions in COPD. Numerous studies,

however, reported on the association between nutritional status and healthcare utilisation, focusing on

patients hospitalised for a COPD exacerbation or predictors thereof. The studies showed that being

undernourished in COPD is likely to be associated with longer in-patient hospital stays [108, 109], a higher

probability of being readmitted [63, 110] and an increase in healthcare utilisation [111] in comparison with

normally nourished patients. Three randomised controlled trials in COPD investigated the effects of

nutritional supplementation on healthcare utilisation and/or costs [66, 77, 112]. Two studies did not find a

difference in hospital admissions. It is, however, likely that in these studies, the duration of follow-up of

f6 months was too short to detect an effect on healthcare utilisation. The only full economic evaluation,

which was the pre-specified subgroup analysis of the 24-month Interdisciplinary Community-Based COPD

Management Program trial, comparing nutritional rehabilitation with usual care in COPD patients with

low muscle mass, did find a significant reduction in hospital costs [77]. The mean total COPD and non-

COPD related costs per patient after 2 years were J12 830 for the intervention group and J14 025 for the

usual care group, resulting in net savings of J1195 (95% CI -7905–5759). Compared with the usual care

group, the intervention group had a significant decrease in hospitalisation costs J-4724 (95% CI

-7704– -1734). Because of these net cost savings, no cost-effectiveness ratio was calculated. There is a clear

need for more cost-effectiveness studies of nutritional counselling and supplementation to support decision

making about reimbursement of these interventions in COPD. There are several possibilities. One is the

conventional approach of designing randomised clinical trials in which the additional costs and benefits of

adding a nutritional intervention to usual care is investigated. Because usual care is most likely a

multimodal pulmonary rehabilitation programme or disease management programme that already includes

nutritional counselling, the newly designed trials should focus on assessing the added value of the oral

supplements or of long-term nutritional counselling. Given the current lack of any cost-effectiveness data,

these trials could recruit patients from different target groups including end-stage COPD patients with both

muscle loss and weight loss (cachexia) as well as weight-stable COPD patients with muscle wasting

(sarcopenia). In addition, we need better data on the longitudinal association between changes in the risk

factors weight change, BMI and FFMI, and the risk of COPD exacerbations and hospitalisations. Such data

could come from observational studies. They could be used in cost-effectiveness modelling studies to

simulate potential long-term effects of changes in weight, BMI and FFM on health status, healthcare

utilisation and costs. The latter is necessary because the costs of nutritional intervention in sarcopenic

COPD patients are likely to precede the benefits by far.

Dietary quality and nutrient deficiencies
Vitamin D deficiency and insufficient intake of vitamins with antioxidant capacity (vitamins A, C and E)

have been reported in COPD. Vitamin D has an important role in bone and calcium homeostasis but effects

may occur beyond bone health, as anti-inflammatory, anti-infectious and anti-tumoural actions, as well as

neuromuscular improvements, have been attributed to vitamin D [113]. Vitamin D status is assessed by the

measurement of serum levels of 25-OHD, a precursor of the active hormone. In a general population,

vitamin D status is an independent predictor of all-cause mortality, upper airway respiratory infections

and pulmonary function. For COPD, conflicting evidence exists on whether 25-OHD levels correlate with

lung function decline, infectious exacerbations and muscular function [114–117]. Vitamin D status is

determined by the synthesis capacity of the skin, hours of sun (ultraviolet) exposure, genetic variation in

key enzymes of the involved pathway and supplemental intake in food. In COPD, vitamin D deficiency

frequently occurs because of smoke-induced skin ageing, reduced outdoor activity and low-quality dietary

intake. Based on internationally accepted cut-offs, vitamin D deficiency (25-OHD levels ,20 ng?mL-1) is

highly prevalent in COPD and increases with disease severity. The hypothesis that such deficiency may also

causally contribute to pathogenesis of COPD is much debated but recent prospective epidemiological

evidence associates vitamin D deficiency with an increased incidence of COPD and a more rapid decline of

pulmonary function in subjects with COPD [118]. The higher prevalence in more advanced COPD and in
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nutritionally depleted states suggests that screening for vitamin D deficiency may be of value in these

populations. It may restrict lifelong supplementation to vitamin D deficient patients, in whom the beneficial

effects on the bones and fall prevention, especially if combined with calcium intake, are proven. Daily

intakes in addition to a minimal amount of ultraviolet radiation exposure vary with age but a dose of

800 IU with 1 g calcium is considered to be largely sufficient. The potential of high-dose supplementation

to obtain other than calcaemic effects, including lung function decline and COPD exacerbations, needs

further exploration [119].

Insufficient intake of fresh fruits and vegetables may result in deficiency of vitamins with antioxidant

capacity. Conversely, long-term supplementation with vitamin E has been shown to reduce the risk of

COPD [120] but no evidence exists on the positive effects of additional vitamin intake on clinical outcome

in a COPD population. As smoking and lung inflammation in COPD are known to cause significant

oxidative stress, a reduction of the antioxidative capacity may have negative effects on the course of COPD.

Large, population-based epidemiological studies have shown that a prudent diet is associated with better

pulmonary function, less lung function decline and reduced risk of COPD [121–123]. More specifically,

greater intake of dietary fibre has been consistently associated with reduced COPD risk, better lung function

and reduced respiratory symptoms [124]. Three studies have reported associations between frequent or high

consumption of cured meats and increased risk of developing COPD [121, 125, 126]. A recent study has

extended this association to include the evolution of the disease, revealing that high cured meat

consumption is linked to a higher risk of readmission to hospital with COPD [127]. Finally, albeit rarely

assessed in clinical practice, iron deficiency often occurs in COPD, which may be caused by several factors

including systemic inflammation, malabsorption of iron from the gut, renal failure (as a consequence of

concomitant chronic kidney disease or diabetes mellitus), and medications such as angiotensin-converting

enzyme inhibitors and corticosteroids [128]. Overall, the evidence indicates that a well-balanced diet with

sufficient intake of fresh fruits and vegetables is beneficial to COPD patients, not only for its potential

benefits on the lung, but also for its proven benefits on metabolic and cardiovascular risk.

Nutrition as part of integrated disease management
Nutritional intervention has so far been studied either as single treatment or as adjunct to exercise training

in depleted COPD patients, often in the context of pulmonary rehabilitation. The efficacy of nutritional

supplementation could be enhanced by additional interventions including smoking cessation, correction of

hypoxaemia and/or hypercapnia with long-term oxygen therapy and/or noninvasive ventilation, reduction

of static and dynamic hyperinflation by long-acting bronchodilators or lung volume reduction, or

androgens either to correct hypogonadism or to boost muscle anabolism. Two studies have shown the

potential of a multimodal rehabilitation programme consisting of nutritional supplementation, androgens

and exercise training in improving clinical outcome and even survival in malnourished patients with

advanced COPD [74, 129]. Long-term multimodal intervention studies are lacking that demonstrate if these

modalities are indeed able to significantly change the natural history of weight loss and muscle wasting, and

reduce morbidity and mortality. Attempts to prevent or correct weight loss during acute exacerbations are

scarce and, in fact, only one placebo-controlled randomised clinical trial so far has proved the feasibility and

efficacy of nutritional supplementation in hospitalised COPD patients in maintaining energy balance and

increasing protein intake [59]. The added value of enteral nutritional support for COPD patients who do

not respond to oral nutritional supplementation has not been systematically investigated.

The pink puffer and blue bloater revisited
In 1968, FILLEY et al. [4] already included body habitus in the clinical presentation of two contrasting types

of end-stage COPD patients, i.e. the emphysematous type (pink puffer) and the bronchial type (blue

bloater). As an extension of this classification, considering not only pulmonary impairment but also

comorbidity, three metabolic phenotypes are presented in figure 4 that illustrate the influence of

(epi)genetics, lifestyle and pulmonary-derived triggers on muscle, bone and adipose tissue, and related

functional and cardiovascular risk, as discussed in this article. Figure 4 also indicates the need for an

integrated, often multimodal intervention approach. The metabolic phenotypes are based on current

scientific evidence but will probably be refined in the near future. In the online supplementary material,

three cases of these metabolic phenotypes are presented to aid clinical diagnosis and practice.

Conclusions and directions for future research
1) Nutritional status is an important determinant of outcome of COPD.

2) Nutritional risk can be assessed by longitudinal measurement of body weight and body composition.
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3) The prevalence of vitamin D nutrient deficiency is high in COPD and could be incorporated into

nutritional risk screening.

4) The nutritional risk profiles associated with different metabolic phenotypes of COPD patients could be

useful in patient counselling.

5) Nutritional intervention is likely to be effective in undernourished patients (based on the Cochrane

review [67]) and is probably most effective if combined with an exercise programme.

6) Providing evidence of the cost-effectiveness of nutritional intervention is required to support

reimbursement of, and thus increase access to, nutritional intervention.

7) Overall, the evidence indicates that a well-balanced diet with sufficient intake of fresh fruits and

vegetables is beneficial to COPD patients, not only for its potential benefits on the lung but also for its

proven benefits on metabolic and cardiovascular risk.

Directions for future research identified by the Task Force are presented in table 3.
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FIGURE 4 Abnormal metabolic phenotypes and related nutritional risk in chronic obstructive pulmonary disease.
a) Healthy (reference) with: 1) normal high-resolution computed tomograph of lung tissue; 2) graphic representation of
magnetic resonance imaging (MRI) with quadriceps muscle (red) and adipose tissue (yellow); 3) normal quadriceps
muscle cross sectional area and fibre type distribution (red: type I; pink: type IIA; white: type IIX); 4) healthy arterial
blood vessel; 5) normal bone tissue; and 6) graphic representation of MRI image of abdomen showing visceral and
subcutaneous adipose tissue (yellow). b) Cachexia is often linked to 1) emphysema and hyperinflation, with 2) loss of
skeletal muscle mass combined with 3) muscle fibre atrophy, and a type I to II shift leading to decreased skeletal muscle
function, 5) osteoporosis and 6) wasting of fat mass. c) Obesity is often linked to 1) chronic bronchitis with 6) increased
subcutaneous and visceral adipose tissue, and 4) arterial stiffness and increased cardiovascular risk. d) Sarcopenia and
hidden obesity is not clearly linked to a specific pulmonary phenotype, but is characterised by 2) loss of skeletal muscle
mass combined with 3) muscle fibre atrophy and a type I to II shift leading to decreased muscle function, preservation of
fat mass but redistribution of adipose tissue towards increased 6) visceral adipose tissue, 4) arterial stiffness and increased
cardiovascular risk.
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