Imaging of sarcoidosis of the airways and lung parenchyma with correlation with lung function

Hilario Nunes (1), Yurdagul Uzunhan (1), Thomas Gille (2), Christine Lamberto (2), Dominique Valeyre (1), Pierre-Yves Brillet (3).

University Paris 13, UPRES EA 2363, Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, department of Pneumology (1), Physiology (2) and Radiology (3), Bobigny, France.

Address correspondence to: Hilario Nunes, MD PHD, Service de Pneumologie, Hopital Universitaire Avicenne, 125 rue de Stalingrad, 93009 Bobigny, France.

Tel: + 33 1 48 95 51 21
Fax: + 33 1 48 95 51 26
E-mail: hilario.nunes@avc.aphp.fr
ABSTRACT

Imaging holds a prominent position in the assessment of sarcoidosis diagnosis and outcome, which is extremely variable. The chest radiography staging helps predict the probability of spontaneous remission and stage IV is associated with higher mortality. However, the reproducibility of reading is poor and changes in radiography and lung function are inconsistently correlated, which may be problematic for the monitoring of disease and treatment response. Chest CT makes a great diagnostic contribution in difficult cases. Bilateral hilar lymphadenopathy with peri-lymphatic micronodular pattern is highly specific of sarcoidosis. CT is important for the investigation of pulmonary complications, including aspergilloma and pulmonary hypertension. CT improves the yield of bronchoscopy for obtaining a positive endobronchial or transbronchial biopsy. CT findings may also discriminate between active inflammation and irreversible fibrosis, with occasional influence on therapeutic decisions. Three CT patterns of fibrotic sarcoidosis are individualized with different functional profiles: predominant bronchial distortion is associated with obstruction, honeycombing with restriction and lower DLCO whereas functional impairment is relatively minor with linear pattern. The clinical impact of correlations between CT severity scores and functional impairment is uncertain, except for elucidating the mechanisms of airflow limitation, which include bronchial distortion, peribronchovascular thickening, air-trapping and bronchial compression by lymphadenopathy.
INTRODUCTION

Sarcoidosis is a systemic granulomatous disease of unknown cause that primarily affects the lungs and the lymphatic system in more than 90% of patients. Disease clinical phenotypes, course and prognosis are highly heterogeneous. The diagnosis of sarcoidosis is based upon the association of compatible clinical and radiological findings, histological demonstration of noncaseating granulomas, and exclusion of other granulomatous disorders [1]. However, clinical and radiological findings are extraordinarily variable and histological confirmation is sometimes elusive. The value of chest radiography for the diagnosis of sarcoidosis is unsatisfactory. Chest computed tomography (CT) is much more accurate, but it is not required in all patients. Its true role has been delineated more clearly in cases with difficult diagnosis or suspected pulmonary complications. Imaging also makes a major contribution to prognosis appraisal. The radiography staging described by Scadding more than five decades ago continues to hold a prominent position in the assessment of sarcoidosis outcome although drawbacks in the reproducibility of reading have been recently underlined. Similarly, the role of radiography in the monitoring of disease against pulmonary functions tests (PFTs) has been the subject of controversy. Numerous studies have correlated CT features with disease activity and CT scores with functional abnormalities, essentially in an attempt to better understand the mechanisms of several complications such as airflow limitation. The clinical impact of these correlations between imaging and PFTs is important to evaluate. In fact, there is actually a lack of defined consensus concerning the best end-point for the monitoring of disease and treatment response, which is critical in clinical trials.

In this article, we review the current knowledge and the emerging concepts in the imaging of pulmonary sarcoidosis with parenchymal and/or airway involvement, with a particular focus on the correlation with lung function. The present article will not deal with positron emission-computed tomography scan (FDG-PET), which may have a place of choice in the near future, because it is the topic of another article published in this series.
A. CHEST RADIOGRAPHY

Conventional chest radiography should be performed in all sarcoidosis patients. It is abnormal at some point in more than 90% of cases and is often the first investigation to suggest the diagnosis [1-3]. Between 30% and 60% of patients present with incidental radiographic abnormalities [3].

1. Radiographic features

The most salient feature of sarcoidosis is bilateral hilar lymphadenopathy (BHL), noted in 50-80%, which is typically symmetrical and non compressive [3, 4]. In patients with thoracic lymphadenopathy, BHL is present in over 95% of cases, variably associated with enlargement of right paratracheal and aortic-pulmonic window lymph nodes also common (>70%). Subcarinal (21%), anterior mediastinal (16%) and posterior mediastinal (2%) involvement are less frequent [5]. Lone paratracheal, subcarinal or mediastinal enlarged lymph nodes without BHL is exceptional [5], as well as unilateral hilar lymphadenopathy, and should raise the possibility of an alternative diagnosis (i.e. infection including tuberculosis or histoplasmosis, lymphoma, and bronchogenic or extra-thoracic carcinoma). Nodal size ranges from minimal to massive and tends to be largest at presentation, with gradual diminution leading, in a majority of cases, to complete regression within two years. When initially unilateral, sarcoidosis lymph nodes usually become bilateral within 3 months. In long-standing sarcoidosis, calcification is seen on chest radiography in more than 20% after 10 years of disease, appearing in most instances during the second or third decade after onset [6].

Pulmonary infiltrates are noted in 25-50% of sarcoidosis patients [3, 4]. Infiltrates are usually bilateral and symmetrical with a frank predilection for mid/upper lung zones. The pattern is typically micronodular or reticulomicronodular [3, 4]. When present, pulmonary fibrotic changes are more or less marked on chest radiography with evidence of architectural
distortion, upper lobe volume loss with hilar upward retraction, coarse linear bands, masses, and bullae in advanced disease [3, 4].

Radiographic findings are atypical in approximately 20% of cases [7, 8] and are more frequent over the age of 50[9]. CT is of considerable aid when radiographic presentation is atypical and not immediately diagnostic, as discussed later.

2. Radiographic scoring systems

2.1. Scadding staging

Scadding classified postero-anterior chest radiography findings into 5 stages: stage 0 (normal), stage I (BHL), stage II (BHL accompanied by pulmonary infiltrates), stage III (pulmonary infiltrates without BHL) and stage IV (overt pulmonary fibrosis) [10]. The distribution of patients according to radiographic stages largely depends on geographic or ethnic origin and referral source. Overall, the frequency of each stage at presentation is reported as: stage 0: 5-15%, stage I: 25-65%, stage II: 20-40%, stage III: 10-15%, stage IV: approximately 5% (Table 1) [1-4].

A major shortcoming with this staging classification is the poor reproducibility of reading. In a recent study, the overall agreement between two expert radiologists was fair (weighted $\kappa = 0.43$). The two major problems of interpretation were the assessment of lymphadenopathy and the presence of fibrosis [11]. Surprisingly, the interobserver agreement was quite good in another study (weighted $\kappa > 0.8$), including for the adjudication of stage IV disease [12].

2.2. Muers scoring system

The International Labor Organization (ILO) radiographic scoring system, originally developed for pneumoconiosis, has been modified and applied to sarcoidosis. In this system, shadows are categorized into four subtypes (R: reticulonodular, M: mass, C: confluent, or F: fibrosis), which are assigned a score based on extent and profusion separately [13]. Interobserver agreement is better than Scadding staging, with weighted κ values ranging from 0.327 to
0.578 in one study [11] and 0.67 to 0.87 in another [13] depending on the type of score. R is the predominant abnormality, with a strong correlation between extent and profusion components [13] and the best agreement between readers [11, 13].

3. Role of chest radiography in the diagnosis of sarcoidosis

In the absence of pathologic confirmation, clinical and/or radiographic features may be diagnostic in stage I (reliability of 98%) or stage II (89%), but are less accurate for patients with stage III (52%) or stage 0 (23%) disease [1]. Other important causes of BHL, all much less frequent than sarcoidosis, are infection (mycobacterial or fungal) and malignancy (lymphoma, bronchogenic or extra-thoracic carcinoma). In a large series, Winterbauer et al., revealed that symmetrical BHL was the mode of presentation in only 3.8% of lymphomas, 0.8% of bronchogenic carcinomas and 0.2% of extra-thoracic carcinomas [14]. Asymptomatic BHL, in association with an unremarkable physical examination or acute symptoms (i.e. uveitis, polyarthritis or erythema nodosum), was highly suggestive of sarcoidosis. Conversely, BHL indicated malignancy when associated with anaemia, a pleural effusion or anterior mediastinal mass, peripheral lymphadenopathy or hepatosplenomegaly [14]. Thus, pathologic verification can reasonably be skipped in many patients with typical stage I, provided that they are asymptomatic or have Lofgren’s syndrome [1].

4. Role of chest radiography in the prognosis of sarcoidosis

4.1. Radiographic staging and disease outcome

Despite its purely descriptive nature, Scadding radiographic staging supplies major prognostic information. Although individual exceptions exist, there is clearly an inverse relationship between stage at presentation and the probability of recovery from sarcoidosis. Spontaneous resolution occurs in 60-90% of patients with stage I, 40-70% with stage II, 10-20% with stage III and does not occur with stage IV disease (Table 1) [1, 3, 4]. Regardless of the initial stage, the majority of spontaneous remissions occur within the first two years of presentation. The likelihood of remission is reduced after 5 years but patients do not
necessarily show a stepwise progression from stage 0 to stage IV. In a large patient cohort, only 9% of stage I patients had progressed to stage II (and 1.6% to stages III or IV) at 5 years, with only 5.5% of stage II patients had progressing stage IV [15]. Stage I persists after five years in 8% of cases, which is not inevitably a sign of ongoing activity. Stage IV usually develops after 5 years of disease. It is associated with a substantial morbidity and a higher mortality [16, 17].

4.2. Correlations of chest radiography with baseline lung function

In individual cases, radiographic findings do not, in themselves, reliably discriminate between active inflammation and fibrosis. Moreover, correlations between the radiographic staging and other pulmonary parameters such as the degree of physiological impairment, dyspnea [18] and six minutes walk test [19] are imprecise. Overall, PFTs are abnormal in about 20% of patients with stage I, and 40-80% of those with pulmonary infiltrates (stage II, III or IV) [2, 3, 20]. The frequency and severity of restrictive defect and reduced carbon monoxide diffusing capacity (DLCO) usually increase in more advanced stages. However, even when chest radiography is normal, alterations in forced vital capacity (FVC) and DLCO are noted in 15-25% and 25-50% of cases, respectively [3, 20]. Although occurring at all stages of disease, airflow limitation is more frequent with progressive staging: reported respective frequencies of airflow limitation are 2-25% in stage 0, 7-12% in stage I, 8-38% in stage II, 10-23% in stage III, and 45-71% en stage IV [21][22, 23]. Stage IV has been found to be an independent index that relates to lower forced expiratory volume un 1 second (FEV1)/FVC in a large prospective study [22] and some patients with stage IV exhibit severe obstructive defect [24, 25].

Exercise gas exchange measurements have a significant variance with radiographic stages [26, 27]. Yet, resting DLCO has a much superior performance than chest radiography in predicting exercise-induced desaturation [26, 27]. Arterial desaturation is usually not observed in stage 0-I disease [27]. In patients with stage II–IV there is no further independent improvement in variable prediction when radiographic staging is considered in
addition to DLCO[27]. In one study, the stage was found to be more significantly associated with alveolar-arterial oxygen tension difference (A-a)PO$_2$ than with DLCO in patients with stage 0-II disease [26]. Chest radiography semi-quantitative scoring systems improve the correlations with baseline physiological impairment [13] and changes during follow-up (discussed below).

5. Role of chest radiography in the monitoring of sarcoidosis

5.1. Correlations between changes in serial chest radiographies and lung function

Chest radiography is inexpensive, non-invasive, and easily accessible. It is traditionally considered the cornerstone of monitoring of sarcoidosis patients together with serial PFTs [1]. However, there is little data that validates this role of radiography.

In a prospective study of long-term corticosteroids in pulmonary sarcoidosis, changes in chest radiography were analysed against physiological parameters over five years. Significant correlations were demonstrated with R and F scores of the Muers scoring system. Despite low correlation coefficients, R score improved in parallel with spirometry and TLCO and a worsening F score was associated with deteriorating FEV1 and DLCO [13]. Similarly, Baughman et al. evaluated the sensitivity of chest radiography to detect treatment effect in the prospective trial of infliximab for pulmonary sarcoidosis [11]. The films were compared using two methods: the Muers scoring system and the five-point Likert scale global assessment (markedly worsened, worsened, unchanged, improved, and markedly improved). Interobserver agreement was good for the two methods (weighted $\kappa = 0.61$ for the Likert scale of global assessment of change). Only the R score showed a significant improvement with therapy. The initial R score was positively correlated with subsequent improvement in FVC under therapy. There was also a significant correlation between the changes in FVC and both the changes in R score and the global assessment. Correlation was better for the latter [11], suggesting that the evaluation of a simple instrument, easily applicable in routine, was at least as robust as the complex Muers scoring system.
In a large retrospective study, Zappala et al. also examined two methods of serial chest radiographic scoring in relation to serial pulmonary function trends, irrespective of treatment effect [12]. Changes in Scadding radiographic stage and disease extent were condensed into a three-point scale: reduction, stability and increase. Despite fair to good interobserver agreement for each of the two methods (weighted $\kappa > 0.76$ for the change in disease extent), the relationship between changes in stage and disease extent at two years and four years of follow-up was poor. Changes in disease extent were linked to FEV1, FVC, and DLCO variations whereas changes in stage were not. However, discordance between PFTs and disease extent data was still observed in approximately 50% of cases. In the remaining cases, isolated change in disease extent was more frequent than isolated change in PFTs, but in 6%, disease extent and PFTs exhibited change in opposing directions [12].

The utility of chest radiography in diagnosing exacerbations of pulmonary sarcoidosis was addressed by Judson et al [28]. For that purpose, they used the profusion score of the ILO reading system. Exacerbation was defined by worsening pulmonary symptoms thought to be related to pulmonary sarcoidosis (e.g. not infection) that responded to an increase of the corticosteroid dose. A subset of these patients (66.7%) was identified with a spirometric decline of $\geq 10\%$ in FVC or FEV1 from the previous baseline visit. Interobserver agreement in the determination of profusion score appeared to be moderate (weighted $\kappa = 0.54$). Although changes in profusion score tended to worsen during exacerbations in both the whole population and the spirometric decline subgroup, a large percentage of readings demonstrated no modification (32% and 27%, respectively) or an improvement (19% and 23%, respectively). As expected, a significant decrease in spirometry measurements was showed during exacerbations. There were no statistically significant correlations between changes in the profusion score and either changes in FVC or FEV1 for either the whole population or the spirometric decline subgroup [28]. The authors concluded that radiography was inadequate to reliably detect exacerbations of pulmonary sarcoidosis.

Taken together, these results highlight the weaknesses of chest radiography for the monitoring of sarcoidosis. However, a further advantage of serial chest radiographies over
PFTs is the detection of pulmonary complications, including aspergilloma. From this point of view, it's the combination of the two tests that are, in essence, helpful in clinical practice.

5.2. Chest radiography as a guide for treatment decisions

Treatment for pulmonary sarcoidosis is usually dictated by the severity of symptoms and/or functional impairment but chest radiography per se may also guide therapeutic intervention [29-31]. A prospective randomized study conducted by the British Thoracic Society provides some support for long-term corticosteroid therapy in asymptomatic patients with persistent pulmonary infiltrates for at least 6 months [29]. After adjustment for possible confounding factors, the average difference in VC between treated and untreated groups at final assessment was 9% of the predicted value. In another placebo-controlled study, patients with newly detected stage I or II-III disease and (sub)normal lung function were immediately treated with oral prednisolone for three months, followed by inhaled budesonide for 15 months[30]. Treated patients with initial stage II-III, but not stage I, improved significantly more in FVC and DLCO as compared to placebo. Functional benefits were maintained after five years, but differences were small[31]. It remains uncertain whether modest improvements in asymptomatic stage II-III patients is clinically pertinent and justify the morbidity associated with treatment.

CHEST COMPUTED TOMOGRAPHY

1. Standard CT scanning protocols

Multidetector CT, combining helical volumetric acquisitions and thin slice thickness (0.6 to 1.25 mm), is now accepted as the imaging reference for the initial work-up of patients with diffuse lung diseases (DLDs) [32]. It allows multiplanar reconstructions and post-processing techniques, which are likely to become increasingly useful. Maximum intensity projections enhance the detection and analysis of the distribution of micronodular structures. Minimum intensity projections improve the detection of areas of increased and reduced density, and bronchial stenosis [33]. However, multidetector CT acquisitions increase the radiation
burden, which should stay “As Low As Reasonably Achievable” [34]. Therefore, in our group, high-resolution CT (HRCT) protocols with acquisition of 1 to 1.5 mm thin slices at 10 mm spaced intervals, are still preferred in the follow-up of young patients. Additional sections at end expiration can be useful in the presence of airflow obstruction to identify air trapping in patients with small airways involvement. Administration of contrast agents can be useful to better discern lymphadenopathy and in patients with vascular complications, including pulmonary hypertension (PH) [35, 36].

2. Indications for chest CT

According to the ATS/ERS/WASOG expert consensus statement on sarcoidosis, CT is warranted in the following circumstances: (i) atypical clinical and/or radiographic findings, (ii) a normal chest radiography but a clinical suspicion of sarcoidosis and (iii) detection of pulmonary complications [1]. Besides, CT may also improve the diagnostic yield of bronchoscopy for obtaining a positive endobronchial [37] or transbronchial biopsy [38] and it is required before endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) [39]. CT findings may discriminate between active inflammation and irreversible fibrosis [40-44], with occasional influence on therapeutic decisions. Furthermore, correlations between disease severity on CT and functional impairment have been examined in numerous studies [23, 35, 40, 44-54].

We will first portray pulmonary sarcoidosis on CT and then try to delineate the real contribution of CT in these different situations.

3. Chest CT features

CT appearances of sarcoidosis mirror the perilymphatic spreading of granulomatous process observed at pathology. The hallmark of disease is bilateral hilar lymph node enlargement with micronodular pattern [4, 55] (Figure 1). However, the spectrum of disease on CT is extraordinarily protean [4, 55] and multiple features or patterns more or less characteristic
may be variously associated in individual patients. Readers can refer to the Fleischner Society glossary for the definition of terms used in this section [56].

3.1. Thoracic lymphadenopathy

Although not necessary in typical stage I disease, CT is more sensitive to detect enlarged lymph nodes than a chest radiography [57]. Overall, hilar or mediastinal lymphadenopathy are encountered on CT in 47-94% of patients with sarcoidosis, irrespective of radiographic staging [35, 42, 57-60]. Lymph nodes are usually bilateral but with right-sided predominance [57-60]. In two studies based on the ATS lymph node map, the most commonly involved nodal stations, in decreasing order of frequency, were: 4R (right lower paratracheal), 10R (right hilar), 7 (sub-carinal), 5 (sub-aortic, i.e. aorto-pulmonic window), 11R (right interlobar) and 11L (left interlobar) [59, 60]. A median of 3 lymph nodes were enlarged, as defined by a maximum short axis diameter ≥ 10 mm, and diameter was ≥ 20 mm in 29.1% of cases [59]. Lymphadenopathy is also common in collagen vascular disease (70%), IPF (67%), extrinsic allergic alveolitis (53%) and organizing pneumonia (36%)[59]. However, the number of enlarged lymph nodes is higher in sarcoidosis and a size over 20mm in short axis diameter increases the chance of sarcoidosis [59].

Sarcoidosis lymph nodes are usually non necrotic and non compressive, with nodal calcification frequent in longstanding disease. Calcification are present at presentation in 20%, increasing to 44% four years later [42], with egg-shell aspect present in 9% [58]. The mean diameter of calcified nodes is significantly larger in sarcoidosis, calcium deposition is more commonly focal in sarcoidosis and diffuse in tuberculosis and, when present, hilar nodal calcification is much more likely to be bilateral in sarcoidosis than in tuberculosis (65% versus 8%) [58].

Lymphadenopathy may be unilateral or localized in an unusual site. Although possible in sarcoidosis, the enlargement of internal mammary and pericardial lymph nodes requires exclusion of lymphoma. Enlarged lymph nodes, essentially when calcified, and/or mediastinal fibrosis can rarely provoke extrinsic compression on adjacent organs, including bronchi [61],
large pulmonary arteries [36] or veins [62, 63] the superior vena cava [64], the oesophagus [65], the left recurrent nerve [66] or the thoracic duct [67].

3.2. Pulmonary patterns

Micronodular opacities with a perilymphatic distribution

Nodules represent aggregates of granulomas [68]. They are seen in 80-100% of all patients [40-42, 44, 45, 53, 54, 69, 70] but less frequently in stage IV [35]. Most are small, measuring between 1-10 mm in diameter, and have irregular poorly circumscribed margins. Maximum intensity projection may be helpful to detect micronodules and specify their topographic distribution [33]. They usually show a predilection for the mid/upper and posterior parts of the lungs with a perilymphatic distribution (Figure 1). They tend to be more abundant around bronchovascular structures and sub-pleurally, along the concavity of chest wall, the mediastinum and/or the fissures, along the bronchovascular sheath and the interlobular septa [4, 55]. Nodularity can result in a fissural or bronchovascular “beaded” aspect, which is widely accepted as virtually pathognomonic of sarcoidosis (although never formally validated). Irregularity or thickening of the bronchovascular bundles is as a second cardinal sign [4, 55]. Peribronchovascular thickening often emanates from the hilar regions in an axial fashion and occasionally gives rise to luminal stenosis [61]. Other diseases distributed along the lymphatics, such as lymphangitic carcinomatosis and lymphoma, are usually readily distinguished from sarcoidosis on CT [71].

Micronodules may be sparse in distribution rather than widespread or asymmetric. They may be dispersed throughout lungs without any topographic predilection or may exceptionally adopt a haematogenous or a centrilobular configuration rather than perilymphatic, simulating miliary tuberculosis or metastases and hypersensitivity pneumonitis, respectively [72].

Nodular and alveolar opacities
Small nodules can coalesce into larger ones or masses, which can very rarely cavitate [73-75]. Alveolar or pseudoalveolar consolidations are seen in 12-38% of patients [35, 41, 44, 45, 54, 76]. However, a predominance of multiple large nodules/masses and multifocal consolidations is uncommon in sarcoidosis and can mimic organizing pneumonia or malignancy. According to a recent series by Malaisamy et al., the presentation of such a form of disease is usually acute and symptomatic with an excellent prognosis and it may particularly affect smokers [74]. Nodules/masses and consolidations are homogeneous or inhomogeneous, measure between 10 and 80 mm in diameter, and are usually located in the mid/upper lobes, along the bronchovascular bundles or sub-pleurally, with sometimes the presence of a central air bronchogram [74, 77]. They are characterised by ill-defined contours as they fade to a micronodular pattern toward the surrounding lung (Figure 2). In addition to these lesions, other more representative abnormalities such as lymph nodes are usually associated [74, 77]. Solitary mass-like nodule and alveolar consolidation are exceedingly rare in sarcoidosis [74, 78].

Necrotising sarcoid granulomatosis, which is defined pathologically by a sarcoid-like granulomatous reaction with vasculitis (involving both arteries and veins) and noncaseating necrosis, share many clinical and radiological features with alveolar sarcoidosis but is traditionally viewed as a separate entity [79].

Cavitary lesions in sarcoidosis are believed to result from either ischemic necrosis (with extrusion of hyaline material from conglomerate granulomas) or angiitis [73]. Reported rates of cavitary lesions are 3.4% and 6.8% in two CT studies, respectively [40, 75]. According to a recent series by Hours et al., cavitary lesions manifest as thin-walled cysts in most cases or as cavities with thick wall or developing inside nodules or condensations [73] (Figure 2). Cavitary lesions are variable in size and, although occasionally found in isolation, they are more likely to be multiple and bilateral. They usually arise in patients with severe and active sarcoidosis. The evolution of cavitary lesions is variable. A wall thinning is usually observed under treatment whereas a wall thickening is always associated with an infectious
complication [73]. Pneumothorax can occur [73, 80]. Because primary cavitary sarcoidosis is rare, Wegener’s granulomatosis and superimposed infection should always be excluded.

“Sarcoid galaxy” and “sarcoid cluster” signs

Two terms have been recently coined in sarcoidosis to describe a particular distribution of nodules: the “sarcoid galaxy” sign (Figure 3A) and the “sarcoid cluster” sign [81] (Figure 3B). The “sarcoid galaxy” is a large nodule, usually with irregular boundaries, encircled by a rim of numerous tiny satellite nodules. It is usually multiple throughout the lungs. Pathologically, the “sarcoid galaxy” represents innumerable coalescent granulomas that are much more concentrated in the centre of the lesion, than at the periphery [75]. The “sarcoid cluster” also corresponds to rounded or long clusters of many small nodules that are close to each other but, in contrast to the “sarcoid galaxy”, not confluent. Pathologically, the “sarcoid cluster” represents granulomas without coalescence [82]. Although initially reported as a specific manifestation of sarcoidosis, these two signs have been subsequently also identified in other granulomatous diseases, including tuberculosis, silicosis and cryptococcosis. Certain associated features help differentiate these diseases [81].

Linear opacities

Nodules are the only CT abnormality in approximately one third of patients but are more commonly associated with other lesions. Thickened or nodular interlobular septae (septal lines) are frequent, with a wide reported prevalence range (26% to 89%) [35, 41, 42, 44, 45, 53, 76], and are usually less prominent than nodules. Non-septal lines are more rare. Fibrotic septal lines are often irregular and/or distorted. Linear opacities are sometimes organized as a polygonal configuration in a reticular network, with or without ground-glass [35, 40, 53], which can divulge the presence of pulmonary hypertension [35, 36]. Lymphangitic carcinomatosis is usually characterized by more extensive, asymmetric and marked involvement of the interlobular septa and subpleural space than sarcoidosis, with no architectural distorsion [71].
Ground-glass opacification

The frequency of ground-glass varies from 16% to 83% [35, 41, 42, 44, 45, 53, 76]. The pathological significance of ground-glass is not univocal, as this CT feature can result either from the confluence of multiple micronodular granulomas and/or fibrotic lesions [68]. Ground-glass seems to be more common at presentation than later in the disease course [40]. Although seldom the predominant abnormality [40, 44, 45, 48, 50, 52], ground-glass is usually multifocal, rather than extensive. Extensive ground-glass tends to have a superior predominance, with ill-defined margins and it is often overlaid on a background of subtle micronodularity (Figure 4) and associated with lymph nodes [83].

Scarring and fibrosis

Lung architectural distortion is constant in stage IV disease [35, 40], and, overall, is reported in 20-50% of patients [40, 42, 44, 76]. It includes abnormal displacement of hila, fissures, bronchovascular bundles and distortion of secondary pulmonary lobules. Posterior displacement of the main or upper lobe bronchus and volume loss (particularly in the posterior segment of upper lobes) are characteristic features of fibrotic sarcoidosis [35]. Bronchi may be deformed, angulated, crossed or stenosed [35]. Conglomerate masses often surround and encompass the bronchi and vessels. They are a frequent feature in stage IV disease (60%) and are usually central and associated with bronchial distortion [35] (Figure 5).

In advanced fibrotic sarcoidosis, traction bronchiectasis, honeycombing, other type of cystic destruction, bullae and paracatricial emphysema are encountered, mainly in mid/upper areas. Three distinct patterns of distribution have been recognized in stage IV disease [35]: the bronchial distortion pattern (47%), with or without co-existent masses, the honeycombing pattern (29%), and the linear pattern (24%). These patterns are associated with different functional profiles (see below) [35]. In a serial CT study, ground-glass and
consolidations seen on the initial CT tended to evolve into honeycombing whereas conglomerate masses shrank and evolved into bronchial distortion [45].

When present in sarcoidosis, honeycombing usually affects the upper and perihilar regions [35] (Figure 6A), which is very dissimilar from idiopathic pulmonary fibrosis (IPF). Interestingly, a pattern of IPF-like honeycombing has been exceptionally reported in sarcoidosis, showing a striking prominence in the lower lung zones with a peripheral and subpleural distribution, or a diffuse distribution [35, 84]. Pathologic examination is available for a handful of patients. A particular localization of granulomas has been mentioned along the alveolar septa [84, 85] together with a so-called “chronic interstitial pneumonia” taking sometimes the appearance of usual interstitial pneumonia [84-87].

Airways involvement

In sarcoidosis, central and distal airways involvement may result from different mechanisms and lead to airflow limitation [23, 50, 61]. Bronchial involvement, as judged by regular or irregular mural thickening and luminal narrowing, is detected at CT in 65% of patients and is usually concordant with endoscopic findings and endobronchial mucosal granulomas [37]. CT can also demonstrate extrinsic or intrinsic stenosis (see below), traction bronchectasis and bronchial distortion (Figure 5). Minimum projection can provide an additional assessment of these lesions since it’s an accurate tool to study proximal airways [33]. Increasing attention has been devoted to air-trapping [23, 47, 50, 52, 54, 88-91]. Mosaic decreased attenuation caused by air-trapping is often obvious on inspiratory images and is enhanced on expiration. It has been cited as an extremely common feature, being identified on expiratory scans in 83.3-98% of patients [47, 50, 52, 54, 91] and may constitute the sole CT evidence of pulmonary sarcoidosis [52, 90]. This frequency is probably overestimated by these studies where the definition of air-trapping was ambiguous. There is no difference between the predominant inspiratory CT patterns [52] or smoking status [54] with regard to the prevalence or extent of air-trapping. It has been suggested that air-trapping reflects small-airway involvement by peribronchiolar or intra-luminal granulomas or fibrosis.
Pleural involvement

Pleural effusions may result from pleural granulomatous involvement or from the blockage of interlobular septal lymphatic channels by granulomas. Apparent pleural thickening often represents inward retraction of extra-thoracic soft tissue and extra-pleural fat, rather than a true pleural abnormality. Pleural involvement is rare in sarcoidosis, with pleural effusions observed in less than 5% on chest radiography [7, 8] and in 2.8% on ultrasonography [92]. In CT studies, pleural thickening surface is evidenced in 11-33% of patients [40, 42, 70] and a mild effusion in 8.2% [93]. Pneumothorax is exceptionally seen in advanced bullous sarcoidosis or as a consequence of the rupture of a cavitary lesion [73, 80].

Other signs

A “halo” sign [94, 95], a “fairy ring” sign [96], and a “reversed halo” sign [81] (Figure 3C) have been rarely reported in sarcoidosis. The “halo” sign indicates ground glass opacity surrounding a pulmonary nodule, which can result from a large variety of causes, such as infection, mainly invasive aspergillosis in immunocompromised patients, neoplastic and inflammatory disorders [97]. In one case with sarcoidosis, the “halo” sign represented intraalveolar granulomas and aggregates of macrophages in the alveolar spaces with thickened alveolar septa at pathology [94]. The reverse halo sign is referred to a focal, rounded ground-glass area bordered by a nearly complete ring of consolidation [81]. Although long regarded as highly specific of organizing pneumonia, this sign has further been cited in various infectious and non-infectious conditions including sarcoidosis [81]. According to a recent series, the presence of nodular walls or nodules inside the halo of “reversed halo” sign is very suggestive of granulomatous diseases [81]. The term “fairy ring” sign has been used in a unique patient with sarcoidosis [96]. It was formed by a halo with nodular border, but by contrast with the “reversed halo”, the central area of the lesion was composed of normally aerated lung tissue. The authors suggested that the ring of granulomatous tissue extended concentrically from a specific point in the lung [96].
4. Role of chest CT in the diagnosis of sarcoidosis

Diagnostic accuracy of CT against clinical and chest radiography

The accuracy of HRCT for the diagnosis of DLDs depends on underlying disease. Grenier et al. evaluated supplementary information yielded by HRCT after taking into account clinical data and radiographic findings [98]. Computer-aided diagnoses were made by applying a Bayesian model in a large population of DLDs, including patients with pulmonary sarcoidosis. For sarcoidosis, the percentages of correct diagnosis with a high level of confidence were 33-42% with clinical data alone, 52-76% with clinical and radiographic findings and 78-80% when HRCT findings were integrated [98]. This relatively small difference emphasizes the opinion that CT adds little information when a confident diagnosis of sarcoidosis can be made from typical clinical and radiographic presentation [99]. However, it understates the true compelling diagnostic role of CT in other less straightforward cases.

Diagnostic contribution of CT

In the appropriate clinical setting, the observation of the characteristic picture of sarcoidosis on CT (bilateral hilar lymph node enlargement with perilymphatic micronodular pattern) points to a highly confident (virtually pathognomonic) diagnosis (Table 2) (Figure 1). CT can reveal these abnormalities lying below the resolution limits of chest radiography, which is important when there is a clinical suspicion of sarcoidosis with normal chest radiography. CT, in concert with several other standard diagnostic tools, increases the diagnostic likelihood of sarcoidosis, in particular when the disease is confined to one extra-pulmonary organ and the biopsy is considered too risky (as in central nervous system involvement). It seems especially useful in the evaluation of elderly women with uveitis [100, 101].

In atypical clinical and/or radiographic variants of sarcoidosis, there are a broad variety of differential diagnoses. In radiologic practice, the diagnosis of ILDs is usually based on the identification of a predominant pattern on CT. In sarcoidosis, the combination of features is at least as decisive. Bilateral hilar lymphadenopathy, when large, and/or
perilymphatic micronodular pattern are probably the most important findings, whatever predominant or not. These signs, which can be subtle and require to be carefully looked for by the radiologist, are highly prevalent except in advanced pulmonary fibrosis. They are present even in rather uncommon patterns, in particular in “alveolar” or “ground glass” patterns (Figure 4), this association improving considerably the level of diagnostic confidence (Table 2). Proximal bronchial distortion is also an important finding in fibrotic cases. Using a logical analysis of data technique, Martin et al. recently demonstrated the value of combining CT features for the diagnosis of sarcoidosis with predominant ground-glass opacification [83].

CT as help to obtain biopsy/cytology material

There is a clear association between bronchial abnormalities seen on CT and the presence of mucosal granulomas on endobronchial biopsy [37]. Similarly, de Boer et al. have recently demonstrated that the total extent of parenchymal disease on CT in addition to the pattern and lobar distribution, i.e. reticular pattern and ground-glass opacification, predicted the likelihood of a positive transbronchial biopsy at bronchoscopy [38]. CT may help guide EBUS-TBNA [39]. Last, CT-guided transthoracic needle biopsy of mediastinal lymph nodes [102] or lung nodules [74] is occasionally very helpful to establish the diagnosis.

5. Role of chest CT in the prognosis of sarcoidosis

5.1. Correlations between chest CT and disease activity

Correlations between CT findings and classic markers of sarcoidosis activity, including serum angiotensin-converting enzyme (SACE) levels, bronchoalveolar lavage (BAL) lymphocytosis, and gallium scan signal, are inconclusive or discrepant [40, 41, 43, 44, 46]. Much more has been learnt from studies of the reversibility of CT features (spontaneously or under treatment) on serial examinations [42, 44, 45, 76]. Architectural distortion, traction bronchiectasis, honeycombing and bullae are consistently irreversible. Micronodules, nodules, peribronchovascular thickening and consolidation are wholly or partially reversible.
in most, but not all, cases. The evolution of ground-glass and linear opacities is more variable. Ground-glass may steady, worsen or improve over time, reflecting the fact that it may represent either granulomas or fine fibrosis [68, 103]. A coarse texture or concomitant traction bronchiectasis increases the likelihood of underlying fibrosis [103]. Similarly, septal thickening from intense granulomatous infiltration tends to reverse whereas irregular distorted lines are more likely to be fibrotic.

Thus, discrimination between active inflammation and irreversible fibrosis with CT may occasionally be helpful when the decision to initiate or continue potentially toxic treatment is marginal. For instance, in stage IV disease a trial of therapy might be warranted if a potentially reversible component is still visible on CT [35]. This role of CT may be supplanted by FDG-PET in the future.

5.2. Correlations between chest CT and baseline lung function

Many studies have explored the relationships between CT findings and PFTs[22, 23, 35, 40, 44-48, 50-54] with variable results, probably reflecting the diversity of imaging analysis and scoring. In the study of Remy-Jardin et al., lungs were divided into three zones and a percentage involvement score was assigned for abnormal parenchymal patterns (nodules, consolidation, lung distortion, septal and nonseptal linear, ground-glass, and honeycombing). The overall extent of disease was the summation of the scores for each type of abnormality. Profusion of septal lines was the only CT finding that correlated with initial disease activity (as assessed by SACE levels and BAL lymphocytosis). Significant but low correlation was observed between the scores of CT abnormalities and either initial FEV1, FVC or DLCO, except for nodules. CT findings could not help predict the further evolution of disease activity and functional changes over time [44]. A more simple CT semiquantitative scoring system, first described by Oberstein et al. [43], has served in the correlation study of Drent et al. This consisted of coarse quantification of the extent of abnormal parenchymal patterns (thickening or irregularity of the bronchovascular bundle, nodules, septal and nonseptal lines, and consolidation, including ground-glass) using a gradation of four-point scale (0 = no lesions
found; 1 = up to 33%; 2 = up to 66%; and 3 = more than 66%), and the extent of focal pleural thickening, and lymph nodes enlargement (0 = no pathological findings; 1 = minor; 2 = moderate; and 3 = pronounced changes). The total score was obtained by adding up the individual subscores. Interobserver agreement was moderate for the subscores (weighted \(\kappa \) between 0.34 and 0.65, with worse results for bronchovascular bundle and lymph nodes), but excellent for the total score (ICC=0.99). All CT subscores, except lymph nodes enlargement, were correlated with FEV1, FVC, DLCO, PaO\(_2\)max and (A-a)PO\(_2\) max, whereas the chest radiographic stage was not [48].

In other studies, CT was classified according to the subjective appraisal of the predominant pattern of involvement. Lopes et al. investigated the relationship between outcome measures of cardiopulmonary exercise testing (CPET) and CT predominant pattern: nodules, ground-glass, and traction bronchiectasis plus honeycombing. PFTs and CPET results were close to normal only for patients with predominant nodules. Patients with predominant ground-glass showed intermediate values of FEV1, FVC and DLCO as compared to patients of the other two groups. Interestingly, only the CPET results were able to differentiate patients with predominant ground-glass and those with predominant traction bronchiectasis and honeycombing, with a significantly decreased peak VO2 and breathing reserve, and increased (A-a)PO\(_2\) for the latter [51]. As discussed previously, Abehsera et al. separated three CT patterns of fibrotic pulmonary sarcoidosis, which were associated with different functional profiles. The interobserver agreement for recognizing the main CT pattern was very good as observers agreed in 80% of cases (\(\kappa = 0.87 \)). Bronchial distortion pattern was associated with lower expiratory airflow rates, honeycombing pattern with restriction and lower DLCO, and functional impairment was relatively minor when linear pattern predominated [35].

In summary, the degree of functional alteration is usually linked to an overall CT score but most correlations are weak [40, 46, 48, 53]. Total CT score seems superior to chest radiographic staging [48] but its real clinical impact is questionable. Correlations between PFTs and the score of specific patterns are hardly interpretable because of considerable
overlap among CT categories, but they sometimes give clues to our understanding of
disease complications, in particular airflow limitation [22, 23, 50]. Reported frequency of
airflow limitation is wide in sarcoidosis, with an estimate of 8.8% of patients in a recent
prospective study [22]. It is known to portend a higher risk of mortality [25]. CT is a reliable
method to identify the underlying mechanisms of airflow limitation and it enables prediction of
the therapeutic response (Table 4). In a case control study, Naccache et al. demonstrated
that CT patterns of airway involvement (i.e. bronchial distortion, peribronchovascular
thickening, air-trapping, and bronchial compression by enlarged lymph nodes) were found
more frequently, scored higher, and were more often multiple in patients with airflow
obstruction than in those without. Furthermore, functional improvement under treatment was
observed more frequently in patients with predominant peribronchovascular thickening in
comparison to those with predominant bronchial distortion [23]. Of note, interobserver
agreement was good for identifying the CT patterns of airway involvement (agreement for
89% of cases, $\kappa = 0.85$) [23]. In the study of Handa et al., the only CT morphologic
determinant of lower FEV1/FVC was peribronchovascular thickening [22]. Hansell et al.
demonstrated that the extent of reticular pattern was independently associated with several
indices of airflow obstruction, including FEV1, FEV1/FVC, maximal expiratory flow (MEF)
25%/RV and MEF 50%/RV and RV/total lung capacity (TLC) [50]. Air-trapping is associated
with evidence of small-airway obstruction including MEF25-75%, RV and/or RV/TLC in some
studies [47, 52, 90], whereas in others it only contributes little to airflow obstruction [50, 54].

6. Role of chest CT in the monitoring of sarcoidosis

Once the diagnosis of sarcoidosis is secure, CT makes only a small contribution to
monitoring in most subjects. First, the cost and the radiation hazard of repeated and
superfluous exams in young patients have to be kept in mind. Moreover, although no study
has clearly outlined the additional information provided by serial CTs as compared to PFTs
and chest radiography, it is probable that CT is too sensitive, with changes not necessarily
relevant in the practical care of patients. Instead, clinical experience amply supports its role
in the detection of pulmonary complications, in particular when patient presents with unexplained worsening of respiratory symptoms, haemoptysis, disproportionately impaired lung function or airflow obstruction, uncertain chest radiographic abnormalities, aspergilloma or pulmonary hypertension.

Aspergilloma

Mycetoma formation has been reported in about 2% of sarcoidosis patients, essentially those with advanced fibrocystic or cavitary disease [104]. Aspergilloma is more readily visualised using chest CT than radiography, which generally reveals a cavity containing a solid mass, with or without a characteristic air crescent. Fungus ball can be mobile within the cavity when the patient is turned from the supine to the prone position (Figure 7). In the presence of a cavitary lesion, the thickening of the wall and adjacent pleura points to aspergilloma and is sometimes the earliest sign before any changes are visible inside the cavity [73]. Aspergilloma may be multiple and bilateral [104], and this is best appreciated by CT and imperative to recognize before surgery.

Pulmonary hypertension

The prevalence of pre-capillary pulmonary hypertension does not traditionally exceed 5% of all sarcoidosis patients but it largely depends on the stage of disease. Although usually attributed to the destruction of distal capillary bed by fibrotic process and/or to the resultant chronic hypoxemia, various alternative mechanisms come into play, including extrinsic compression of large pulmonary arteries by enlarged lymph nodes or mediastinal fibrosis [4], specific granulomatous or fibrotic vascular involvement that sometimes simulates pulmonary veno-occlusive disease [36, 105], and vasoconstriction by vaso-active factors. Contrast-enhanced CT may raise the possibility of pulmonary hypertension when the widest diameter of the main pulmonary artery is larger than 30 mm or superior to that of the ascending aorta (Figure 6B) but this sign is poorly reliable [106]. It can also help recognize underlying mechanisms by showing vascular compression or both extensive septal reticulations and
ground glass in case of pulmonary veno-occlusive disease [36]. Most importantly, contrast-enhanced CT rules out pulmonary embolism, which has been recently associated with sarcoidosis [107].

Bronchial stenosis

Significant bronchial stenosis is very rare and may occur at any stage of the disease [108]. Obstruction may be the consequence of endobronchial granulomatous involvement and extrinsic compression by enlarged lymph nodes [61]. The stenoses can be solitary or multiple, lobar or segmental and may cause or contribute to pulmonary symptoms [61, 108]. The left upper lobe (44.5%), the right upper and middle lobes (15.5% each), and the left lower lobe (11%) are most often affected. Apart from depicting atelectasis and nodal external reduction of bronchial lumen, CT is useful in determining the extent and nature of bronchial stenosis [37, 108] (Figure 8). However, it cannot replace bronchoscopy, as it misleads to false-positive results, incorrectly predicting the presence of focal bronchial abnormalities in up to 14% of patients [37, 109]. New techniques of reconstruction of bronchial tree may improve the assessment of airways involvement.

B. OTHER IMAGING TECHNIQUES

Despite inherent pitfalls, due mainly to the composition of lung tissue and physiological motion (cardiac pulsation and respiration), magnetic resonance imaging (MRI) is gaining attention in pulmonary imaging [110]. However, data are lacking and relatively ancient in sarcoidosis [111-115] using unenhanced T1 and T2-weighted MRI. Gaeta et al. first used gadolinium enhanced thoracic MRI in a cohort of DLDs, including 10 patients with sarcoidosis and showed enhancement of pulmonary lesions in five of seven patients with active disease [116]. More recent development in diffusion or perfusion imaging could be of major interest to evaluate regional disease activity [117].

CONCLUSION
Imaging makes a major contribution in the diagnosis and management of sarcoidosis patients. Despite substantial disagreement for the recognition of radiographic stage, Scadding classification still provides a rough but inestimable evaluation of disease outcome. The comparison of chest serial radiographies with pulmonary function for the detection of change in disease severity and for the assessment of treatment response requires further studies. Although not necessary in all patients, chest CT is of outstanding utility for the diagnosis of sarcoidosis and its complications in selected cases. CT scores are better correlated with disease activity and functional impairment than radiography, but the real clinical relevance of such correlations is uncertain. A better definition of endpoints is crucial in sarcoidosis, in particular for the quality of clinical trials. Apart from FDG-PET, chest MRI may also get a place of choice in the foreseeable future with the advantage of being radiation-free.
Table 1: Frequency of Scadding radiographic stages at presentation and probability of spontaneous resolution of sarcoidosis.

<table>
<thead>
<tr>
<th>Radiographic stage</th>
<th>Frequency (%)</th>
<th>Resolution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>5-15</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>25-65</td>
<td>60-90</td>
</tr>
<tr>
<td>Stage 2</td>
<td>20-40</td>
<td>40-70</td>
</tr>
<tr>
<td>Stage 3</td>
<td>10-15</td>
<td>10-20</td>
</tr>
<tr>
<td>Stage 4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2: Diagnostic confidence for sarcoidosis according to the predominant pattern and relevant associated features on CT.

<table>
<thead>
<tr>
<th>Predominant pattern</th>
<th>Associated features</th>
<th>Diagnostic confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large bilateral hilar lymphadenopathy</td>
<td>Isolated</td>
<td>High*</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>Very high</td>
</tr>
<tr>
<td>Unilateral lymphadenopathy</td>
<td>Isolated</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>Intermediate †</td>
</tr>
<tr>
<td>Mediastinal, internal mammary or pericardial lymphadenopathy</td>
<td>Isolated</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>Low</td>
</tr>
<tr>
<td>Perilymphatic micronodules</td>
<td>Cluster sign</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Large bilateral hilar lymphadenopathy</td>
<td>Very high</td>
</tr>
<tr>
<td>Nodules/masses or condensations</td>
<td>Unique</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Sarcoïd galaxy</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Large bilateral hilar lymphadenopathy</td>
<td>High</td>
</tr>
<tr>
<td>Cavitations ¶</td>
<td>Isolated</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>Intermediate †</td>
</tr>
<tr>
<td></td>
<td>Sarcoïd galaxy</td>
<td>Intermediate †</td>
</tr>
<tr>
<td></td>
<td>Large bilateral hilar lymphadenopathy</td>
<td>Intermediate †</td>
</tr>
<tr>
<td>Ground glass opacification</td>
<td>Isolated</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Perilymphatic micronodules</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Large bilateral hilar lymphadenopathy</td>
<td>High</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>Basal and peripheral honeycombing</td>
<td>Very low</td>
</tr>
<tr>
<td></td>
<td>Upper/mid and central honeycombing</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Bronchial distortion</td>
<td>High ‡</td>
</tr>
</tbody>
</table>

* In asymptomatic patients with an unremarkable physical examination or acute symptoms (i.e. uveitis, polyarthritis or erythema nodosum).
† Need to exclude superimposed co-morbidities, including infections before attributing the pattern to sarcoidosis.
‡ When bronchial distortion has an upper predominance, with deformed, angulated, crossed or stenosed proximal bronchi and posterior displacement of the main or upper lobe bronchus.
¶ Cavitations usually develop inside nodules/masses or condensations.
Table 3: Reversibility of sarcoidosis features observed on CT (spontaneously or under therapy).

<table>
<thead>
<tr>
<th>Reversible features</th>
<th>Irreversible features</th>
<th>Variable reversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micronodules</td>
<td>Architectural distortion</td>
<td>Consolidation *</td>
</tr>
<tr>
<td>Nodules</td>
<td>Bronchial distortion</td>
<td>Ground-glass opacification †</td>
</tr>
<tr>
<td>Peribronchovascular thickening</td>
<td>Honeycombing</td>
<td>Linear opacities ‡</td>
</tr>
<tr>
<td></td>
<td>Bullae</td>
<td></td>
</tr>
</tbody>
</table>

* Consolidation are wholly or partially reversible in most cases, in particular those with surrounding micronodules, representing coalescent granulomas
† A coarse texture or concomitant traction bronchiectasis increases the likelihood of underlying fibrosis
‡ Irregular distorted lines are more likely to be fibrotic.

Table 4: Underlying mechanisms of airflow limitation observed on CT and probability of response to therapy.

<table>
<thead>
<tr>
<th>Mechanism *</th>
<th>Response to therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchial distortion</td>
<td>No</td>
</tr>
<tr>
<td>Peribronchovascular thickening</td>
<td>Yes</td>
</tr>
<tr>
<td>Intrinsic bronchial stenosis</td>
<td>Variable</td>
</tr>
<tr>
<td>Extrinsic bronchial compression by lymphadenopathy</td>
<td>Yes †</td>
</tr>
<tr>
<td>Air-trapping</td>
<td>Variable</td>
</tr>
</tbody>
</table>

* These mechanisms are usually admixed.
† When lymph nodes are not calcified.
FIGURES

Figure 1: CT image of pulmonary sarcoidosis with bilateral hilar lymphadenopathy and micronodules with a perilymphatic distribution including spreading along the fissures.

![CT image of pulmonary sarcoidosis](image)

Figure 2: Chest radiography (A) and CT image (B) of “alveolar” sarcoidosis associated with profuse micronodular involvement and cavitary lesions on the left.

![Chest radiography and CT image](image)
Figure 3: CT image of the “sarcoid galaxy” sign (A: irregular nodule resulting of the confluence of numerous micronodules), “sarcoid cluster” sign (B: clusters of micronodules without confluence) and “reversed halo” sign (C: ring of micronodules surrounding central ground glass, which is a very rare finding in sarcoidosis).
Figure 4. CT images of a 35 years old woman with pulmonary sarcoidosis and extensive ground-glass opacification. The diagnosis of sarcoidosis is suspected on the association with more characteristic signs of sarcoidosis including bronchial distortion in the superior and posterior regions (A) and the presence of few micronodules with a perilymphatic distribution (B, black box).
Figure 5: A-E: Chest radiography (A) and CT images (B-D) of a 50 years old woman with obstructive pattern (FEV1/FVC ratio = 68%) showing conglomerated masses in the upper lobes with posterior and superior displacement of the main bronchus and distorted airways (angulation, dilatation). Of note, scar emphysema is observed in the anterior part of the lung with reticulations on the left. The numerous nodules and micronodules suggest probable reversibility of lesions. Volume Rendering Technique image of the bronchi (5D) improves the detection of multiple bronchial stenoses (long arrows) and traction bronchiectasis (short arrows).
Figure 6: CT images of a 67 years old woman with fibrosing pulmonary sarcoidosis with honeycombing pattern and pulmonary hypertension. 6A: Honeycombing predominates in the upper and perihilar regions, and along the bronchovascular bundles. Note the various sizes of the cysts. 6B: Contrast-enhanced CT shows the widest diameter of the main pulmonary artery with a diameter superior to that of the ascending aorta and slight vascular compression by enlarged mediastinal lymph nodes.
Figure 7. Chest radiography (A) and CT image (B, performed in procubitus) in a 43 years old woman with cystic lung lesions complicated with aspergilloma (fungus ball with a crescent sign in the right lung).
Figure 8. A-D: Chest radiography (A) and CT images (B-C) of a 60 years old woman with stenoses of the dorsal bronchus of the right upper lobe with atelectasis. Minimum Intensity Projection reconstruction in the coronal plane improves the detection of bronchial stenoses (C), which are confirmed during bronchoscopy (white arrow, D).
REFERENCES

