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ABSTRACT  

Asthma is characterized by chronic airway inflammation and remodeling that can be 

(partially) suppressed by inhaled corticosteroids (ICS). Plasminogen activator inhibitor-1, 

encoded by the SERPINE1 gene, is the key inhibitor of the plasminogen activator system that 

affects tissue repair and remodeling.  

We studied associations between a functional SERPINE1 -675 4G/5G promoter 

polymorphism and asthma development and severity and response to ICS. 

Longitudinal cohorts of 281 asthmatics and their non-asthmatic spouses and the general 

population (n=1390) were studied. No significant associations were found with asthma 

development and IgE levels, nor with FEV1 in non-asthmatic controls. Asthmatic subjects 

carrying the SERPINE1 5G allele had higher IgE and lower lung function levels at follow-up, 

lower maximally attained lung function level, and faster lung function decline compared to 

individuals with the 4G/4G genotype. ICS treatment showed an immediate improvement in 

FEV1 level in asthmatics carrying the 5G allele. However, these asthmatics still had the fastest 

rate of FEV1 decline after initiating ICS treatment. Finally, the 5G allele was associated with a 

lower prevalence of complete asthma remission at follow-up.  

These findings suggest that SERPINE1 is not an asthma susceptibility gene, but rather affects 

the severity, progression and long-term ICS response in asthma.
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INTRODUCTION 

Asthma is characterized by chronic airways inflammation which contributes to 

characteristic structural changes, referred to as airway remodeling. A proportion of patients 

with asthma develops persistent airflow limitation[1-4] or shows an accelerated lung function 

decline[2,5]. Conversely, some individuals outgrow their asthma[6,7]. However, in patients in 

clinical asthma remission ongoing airway inflammation is present with risk of relapse of 

symptoms and a small subset of asthmatics may show complete remission later in life[8].  

Airway remodeling in asthma is the process in which injured epithelial layers are 

replaced by extracellular matrix (ECM) instead of parenchymal cells of the same cell type. 

This pathologic remodeling eventually leads to changes in the airway structure including 

ECM deposition, subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell 

hyperplasia[9]. An imbalance between proteases and their inhibitors in response to 

inflammation contributes to remodelling[10,11]. The plasminogen activator system (PAS) is a 

regulator of ECM proteolysis, both directly through plasmin formation and indirectly through 

plasmin-mediated activation of matrix metalloproteinases (MMPs). Plasminogen activator 

inhibitor-1 (PAI-1) is a key regulator of PAS, inhibiting both fibrinolysis and MMP in the 

lungs. Serum and sputum PAI-1 levels are higher in asthmatic than in healthy subjects[12,13]. 

Increased activity of PAI-1 has been associated with lung fibrosis in murine models[14,15] 

and PAI-1 is thought to play an essential role in tissue repair and remodeling[14,16,17]. PAI-

1 is synthesized by many cells relevant to asthma, and human mast cells release functionally 

active PAI-1 when stimulated by immunoglobulin E (IgE) receptor cross-linking[18]. 

We have previously shown in a genome-wide screen that elevated IgE is linked to 

chromosome 7q21 in a Dutch asthma family study[19]. A number of candidate genes are 

located in this region, one of these being SERPINE1 that encodes PAI-1. Elevated serum PAI-

1 levels and the SERPINE1 -675 4G/5G promoter polymorphism[20,21] have previously been 



   
   

 

associated with elevated serum IgE levels in allergic diseases and allergic asthma[12,22]. The 

4G/5G polymorphism has also been associated with both the development of 

asthma[12,23,24], and asthma severity (lower lung function and increased airway 

hyperresponsiveness (AHR))[12]. Of importance, the SERPINE1 4G/5G polymorphism 

influences PAI-1 expression, the 4G allele being associated with higher PAI-1 levels[20,21]. 

In summary, there is linkage of IgE to a region on chromosome 7 that harbours the 

SERPINE1 (PAI-1) gene[19]. There is evidence for elevated PAI-1 levels in asthma[12] and a 

role of PAI-1 in cell migration and tissue repair[14,16,25-27], airway remodeling[17], and 

SERPINE1 polymorphisms are associated with asthma development and 

severity[12,23,24].Therefore, we investigated associations of SERPINE1 with asthma, IgE, 

and airway remodelling, as reflected by asthma remission and progression, including effects 

on FEV1 level and decline in asthma patients. Since inhaled corticosteroids (ICS) can reduce 

airway inflammation and lung function decline[5], we also assessed the interaction between 

SERPINE1 and ICS use. To this aim we analyzed a unique longitudinal population of patients 

with moderate to severe asthma and their spouses and a large independent longitudinal 

population based cohort as a control group. 



   
   

 

METHODS 

Study populations 

Asthma population: A cohort of 281 patients diagnosed with symptomatic asthma that 

was initially studied in 1962-75 at Beatrixoord Hospital, Haren, The Netherlands, a regional 

referral center for patients with obstructive airways disease. At that time, all were younger 

than 45 years and had AHR to histamine (30 seconds method; PC20 ≤ 32 mg/mL)[28]. 

Between 1990 and 1999, the patients were extensively re-examined as well as 200 spouses of 

these asthmatic probands[7,29]. At the time of testing, all participants had no exacerbation. 

Maintenance asthma and allergy medication was stopped during the previous 2 weeks except 

for oral corticosteroid use[7]. 

General population: A sample of 1,390 people was selected from 2,467 subjects 

participating in the last survey in 1989/1990 of the Vlagtwedde-Vlaardingen cohort study[30]. 

This general population-based cohort study of exclusively Caucasian individuals of Dutch 

descent started in 1965. Participants have been followed up for 25 years with surveys being 

performed every 3 years (maximum of 7 surveys per participant)[31]. We genotyped DNA 

samples of subjects with more than 1,500 ng of isolated DNA available (n = 1,390). There 

were no differences in characteristics at the last survey between the selected and not-selected 

groups[30]. 

The Medical Ethics Committee of the University Medical Centre Groningen approved 

all studies and all participants gave their written informed consent. 

 

 Clinical evaluation 

Asthma population: Probands underwent a standardised, comprehensive evaluation for 

asthma at initial testing, including lung function, AHR to histamine and a symptom 

questionnaire[7,29]. After initial testing, the asthmatic probands had routine check-ups for 



   
   

 

their asthma at least once a year. Data on lung function and corticosteroid use during check-

ups were extracted from the medical records. Lung function data during hospital stays 

because of asthma exacerbations or during pregnancies were not used[5]. In the re-

examination between 1991 and 1999 the same standardised methodology was used and 

spouses were also tested using this methodology. In addition, serum total IgE levels were 

measured and blood samples for DNA isolation were taken. 

General population: During all surveys information on respiratory symptoms and 

smoking status was collected using a questionnaire[32,33] and lung function testing was 

performed[34]. In addition, at the last survey in 1989-1990, serum total IgE was measured 

and blood samples for DNA isolation were taken. 

 

DNA extraction and genotyping  

DNA was isolated from peripheral blood leukocytes using standard methods. All 

subjects were genotyped for the SERPINE1 -675 4G/5G polymorphism (rs1799889). See 

online depository for detailed description of methods.  

 

Statistical analyses  

The Chi2 test was used to test for Hardy-Weinberg equilibrium.  

Case-control analyses (Chi2 test) were performed on the association between the 

SERPINE1 4G/5G polymorphism and the presence of asthma according to the algorithm 

previously published by Panhuysen et al.[29]. (see online depository) Genotype distribution 

of the asthmatic probands and asthmatic spouses of the asthma population were compared to 

genotype distribution of 1) the non-asthmatic spouses of the asthma population and 2) the 

non-asthmatic subjects from the general population. The non-asthmatic spouses are a suitable 

control group as they shared environmental factors with the asthma cases, therefore excluding 



   
   

 

this confounder. In the general population cohort the asthma phenotype according to the 

algorithm could not be established and therefore asthma was defined as ever having 

experienced an asthma attack, as reported on the questionnaire.  

Associations between the SERPINE1 4G/5G polymorphism and serum total IgE were 

determined within the patient and control groups using one-way analysis of variance. Linear 

regression analysis was used to evaluate the effect of the SERPINE1 polymorphism on FEV1, 

adjusted for age, height, sex, pack years smoking, and steroid use. 

The maximally attained level of FEV1 during young adulthood (i.e. the plateau 

phase[35]) was determined as the highest level of FEV1 reached between the age of 20 and 35 

years and could only be determined in the probands of the asthma population (see online 

depository). A linear regression analysis was used to determine the effect of the SERPINE1 

polymorphism on the maximally attained level, adjusted for age at maximum, sex, height, and 

pack years of smoking. 

Linear mixed effect models were used to investigate the effect of the SERPINE1 

4G/5G polymorphism on FEV1[5,36] decline in the probands of the asthma population and in 

the general population. The age of 30 years was the starting point of analyses, because at that 

age the maximum lung function level generally is achieved and lung function starts to 

decline[35] (online depository).  

Finally, the association between complete asthma remission at the follow-up visit and 

the SERPINE1 genotype was determined in the asthma population. Complete asthma 

remission was defined as the absence of wheezing and asthma attacks, presence of normal 

lung function (FEV1 post bronchodilator >90% predicted), absence of AHR (PC20 ≥ 32 

mg/ml) and no use of inhaled or oral corticosteroids. 

As our analyses are hypothesis driven and the outcome variables are not independent 

from each other (e.g. the different lung function parameters are correlated), we did not apply a 



   
   

 

sequential, classical, Bonferroni multiple testing correction. Rather, we used an α of 0.025 

and results with a P value between 0.025 and 0.05 are regarded as borderline significant. 

Linear mixed effect models on FEV1 decline were conducted with S-plus 7.0 

(Insightful Corp, Seattle, Wash). All other analyses were conducted with SPSS (version 16; 

SPSS Inc, Chicago, Ill). 



   
   

 

RESULTS 

The clinical characteristics and the genotype distribution of the study populations are 

shown in Table 1. The SERPINE1 4G/5G polymorphism was in Hardy-Weinberg equilibrium. 

Twenty of the 200 spouses of the probands had asthma themselves and were included in the 

analyses on asthma and asthma phenotypes. In the general population, 143 of the 1390 

(10.3%) included subjects ever had an asthma attack. 

 

Association with asthma and IgE 

The case-control analyses did not show statistically significant differences in genotype 

distribution between asthma cases and non-asthmatic controls (online depository Table E1). 

In probands and spouses with asthma, patients with the 5G allele (4G/5G or 5G/5G) 

had a higher serum total IgE level; (geometric mean IgE, IU/l (%standard deviation)) for 

4G/4G: 58.9 (4.1) and for 4G/5G & 5G/5G: 97.1 (4.6) (P=.019). There were no significant 

associations between the genotypes and IgE levels in non-asthmatic spouses or in asthmatic or 

non-asthmatic subjects from the general population.  

 

Association with lung function 

 Regression analyses showed that the 5G allele was significantly associated with a 

lower FEV1 level in asthma probands and affected spouses (n=301) after correction for 

confounding variables (240 subjects had data on SERPINE1; Table 2). A trend for the same 

association was observed in asthma subjects from the general population (online depository 

Table E2). No associations between SERPINE1 genotype and lung function level were found 

in the control populations (online depository Table E2).  



   
   

 

The 5G allele was associated with a lower maximally attained FEV1 level, i.e. 

asthmatic probands with the 4G/5G or 5G/5G genotype had a 30.4 cl (95% CI; 1.8 � 59.0) 

lower FEV1 level compared to those with 4G/4G genotype (borderline significant: P=0.04).  

In the asthma probands, the mean FEV1 decline was substantially faster in subjects 

with the 4G/5G or 5G/5G genotype (47.7 ml/year (31.1 � 64.2)) than the 4G/4G genotype 

(32.4 ml/year (13.4 � 51.3)). Figure 1; difference of 15.3 ml/year (2.1 � 28.6), P=0.024 

(online depository Table E3).  

As expected, there was an immediate improvement in the FEV1 level after the start of 

ICS[37]. However, this was only present in individuals having the 4G/5G or 5G/5G 

genotypes: FEV1 increased by a mean of 189.9 ml (30.5 � 349.2). This contrasts to asthmatics 

with the 4G/4G genotype, i.e. a fall of -63.1 ml (-298.3 � 172.1). Figure 2; difference of 253.0 

ml (7.9 � 498.0), borderline significant (P=0.044). 

ICS use also slowed down the rate of FEV1 decline over time by 31.2 ml/yr (12.8-

49.5). This effect was comparable between the genotypes (4G/4G vs. 4G/5G or 5G/5G; 

P=0.28).  

  In the general population SERPINE1 genotypes were not significantly associated with 

FEV1 decline over time (4G/4G vs. 4G/5G or 5G/5G: -0.8 ml/year (-3.7 � 2.0) faster decline 

in non-asthmatics and 0.2 ml/year (-9.1 � 9.5) less fast decline in asthmatics). 

 

Association with complete asthma remission 

 The prevalence of complete asthma remission at follow-up in the 281 asthmatic 

probands was 11.7% (n=33). Complete asthma remission was more prevalent in subjects with 

the 4G/4G genotype (20.3%) compared to subjects with the 4G/5G genotype (10.9%) or the 

5G/5G genotype (3.8%) (P=0.025).



   
   

 

DISCUSSION 

 This study suggests that the functional SERPINE1 4G/5G polymorphism is associated 

with the severity but not the presence of asthma. Asthmatics with the 5G allele had a 

significantly higher serum total IgE level, a lower FEV1, a lower maximally attained FEV1 

level during young adulthood, and a faster annual FEV1 decline. Data in the general 

population confirmed the association between the 5G allele and lower FEV1 in asthmatics 

only. Interestingly, treatment with ICS was associated with an immediate FEV1 improvement 

in asthmatics with the SERPINE1 5G genotype, a finding that was absent in those with the 

4G/4G genotype. Of note, we suggest the 5G allele was also associated with a lower 

prevalence of complete asthma remission at follow-up.  

 Our genetic findings can be a direct result from differences in PAI-1 activity in airway 

remodeling. PAI-1 has been described to regulate the tissue response and repair by PAS 

inhibition[17]. Higher levels of PAI-1 at the inflammatory site in association with pronounced 

airway remodeling may therefore lead to a lower lung function. The 4G/5G polymorphism 

directly influences the level and activity of PAI-1 in plasma and individuals with the 4G allele 

have higher plasma PAI-1 levels and activity[20,21,38,39]. Differences in PAI-1 levels 

between the genotypes can therefore be involved in the development and progression of 

asthma. We show that asthmatics with the 4G/5G or 5G/5G genotype had a lower lung 

function level than those carrying the 4G/4G genotype. Unfortunately, we have no data on 

serum PAI-1 levels and are thus unable to confirm higher PAI-1 levels in individuals with the 

4G allele. Although some studies have described higher PAI-1 plasma levels to be associated 

with the 4G allele[20,21,38,39], this has not been invariably shown[12,40]. Moreover, 

Stevens et al.[41] showed that PAI-1 expression and activity was increased in epithelial 

brushings of children with asthma which was not reflected in plasma. It thus remains to be 

determined which is the end result of SERPINE1 genotypes on the in situ activity that may 



   
   

 

affect airway wall and lung tissue remodeling. Furthermore, active smoking, alcohol, obesity, 

high serum triglycerides, male sex and age seem to increase PAI-1 levels, whilst regular 

exercise has been associated with lower PAI-1 levels[42-46]. This makes interpreting plasma 

PAI-1 level differences between the genotype groups difficult.   

We found no significant difference in genotype distribution between asthma cases and 

non-asthmatic controls in the analysis. Although this analysis is based on relatively few 

subjects, the remarkable similarity of the genotype distributions of the asthma cases and non-

asthmatic controls which implies that low study power is not driving this non-significance. 

 

Our longitudinal study allowed us to investigate the effect of SERPINE1 4G/5G 

polymorphism on the rate of FEV1 decline especially in relation to the start of ICS treatment. 

As expected, we found a significant initial improvement in FEV1 after the start of ICS 

treatment. Interestingly, this improvement was largest in asthmatics having the 4G/5G or 

5G/5G genotype and absent in the 4G/4G genotype group. This effect could not be driven by 

the fact that asthmatics carrying the 5G allele had a lower level of lung function than the 

4G/4G genotype group, since this was accounted for in the analysis. 

In a pathophysiological perspective, the beneficial effects of the 5G genotype in ICS 

response might be due to differences in PAI-1 levels in the lungs. However, asthmatic 

subjects carrying the 5G allele had a more rapid annual decline in FEV1. ICS treatment did 

not reduce the difference between the genotype groups and subjects carrying the 5G allele still 

had a significantly more rapid annual FEV1 decline during ICS treatment compared to those 

carrying the 4G/4G genotype. This implies that the short-term effects of ICS on FEV1 may be 

differentially regulated in a pathological respect than their long-term effects.  

There exists an imbalance between metalloproteinases (MMPs) and their inhibitors in 

asthma that contributes to airway remodeling[10,11,47], an important mechanism of 



   
   

 

accelerated lung function decline. Human mast cells are an important source of PAI-1[18], a 

major inhibitor of MMPs, and pronounced activity of PAI-1 was reported to associate with 

pulmonary fibrosis[14-17]. Thus PAI-1 may affect airway remodeling in asthma. Cho et al. 

showed that sensitized mast cells release a considerable amount of PAI-1, and this was 

associated with blocking of fibrinolysis thereby promoting fibrin and collagen deposition, 

features of airway remodeling[18]. It is tempting to speculate that ICS use will lead to a 

reduction of PAI-1 activity since steroids suppress degranulation and cytokine production in 

mast cells potently in vitro in a time-dependent manner[48-51]. So far conflicting results have 

been reported on effects of steroids on PAI-1 production by cells in vitro which may largely 

due to the type of cell under study and time of effect measurements. Incubation for 2 to 8 

hours with glucocorticoids resulted in increased PAI-1 levels from keratinocytes and human 

lung fibroblasts[52-54] and partial suppression of fibrinolytic activity of pulmonary alveolar 

epithelial cells[55]. In contrast, after an initial increased PAI-1 activity by 

glucocorticosteroids in human adipose tissue fragments, a significantly reduction in PAI-1 

activity and mRNA expression occurred after a further 48-hour incubation[56]. Finally, there 

is most likely no simple answer to the question in what way ICS use influences PAI-1 levels 

and activity at the bronchial epithelial level, especially since other anti-inflammatory effects 

of ICS, like suppression of cytokine release, are also influencing PAI-1 expression and 

activity. Thus short-term beneficial effects on lung function may result from regulation at 

different cellular levels than the lack of difference in FEV1 decline with glucocorticosteroids 

in relation to PAI-1 genotypes. 

Many studies have investigated which factors determine the progression or severity of 

asthma, especially since severe asthma largely drives the economic costs of asthma 

management. However, it is also of importance to get insight in the driving factors of asthma 

remission. We here found that asthma remission, defined as the absence of asthma symptoms, 



   
   

 

normal lung function, absence of hyperresponsiveness and no use of asthma treatment, 

occurred in 11% of our asthma population. We for the first time suggest that remission of 

asthma may be genetically determined. Asthmatics with the 5G allele in SERPINE1 had the 

lowest prevalence of remission and those with the 4G/4G genotype the highest prevalence. 

Again, this may reflect differences in chronic airway inflammation and remodeling between 

genotypes.  

 

Higher serum IgE levels have been associated with the 4G allele of the SERPINE1 

4G/5G polymorphism[12,57]. We found higher IgE levels in those carrying the 5G allele. 

However, we found no association of the SERPINE1 4G/5G polymorphism with serum total 

IgE in the control groups or with asthma in the case-control analyses. Therefore, we believe 

SERPINE1 is not a susceptibility gene of asthma and is neither solely carrying the risk for 

higher IgE levels in asthma. Thus SERPINE1 is not the gene by which we can explain our 

previously found linkage on chromosome 7q21[19]. 

 

In accordance with previous studies, the 4G allele was the most prevalent allele in our 

populations[12,23,24,58]. In our study we found the 5G allele to carry the risk of 

development of more severe asthma, reflected by lung function impairment, response to ICS 

use and lower prevalence of asthma remission. Others found that the 4G allele was associated 

with asthma and with lower lung function in asthmatic patients[12]. Discrepant findings may 

be due to population stratification. Asthma is a complex disease in which genetic and 

environmental factors contribute to the asthma phenotype. Gene-environment interactions are 

extremely complex and not always linear, such that the same genetic variants might be 

associated with opposite phenotypes in different environments[59]. This might be the case in 

our population; although we have no direct signal which contributing factors may account for 



   
   

 

the conflicting findings. Another explanation may be that the real causal variant in the 

SERPINE1 gene is not the polymorphism we genotyped but another polymorphism that is in 

linkage disequilibrium (LD) with the 4G/5G polymorphism. This LD-structure differs 

between populations and therefore, we found another risk allele than previous studies.  

A recent linkage and association study identified the plasma urokinase plasminogen 

activator receptor (PLAUR) gene in chromosome 19q13.1-3 as a potential asthma 

susceptibility gene[60]. Polymorphisms in the PLAUR gene were associated with asthma, 

AHR, FEV1 and plasma PLAUR levels (alternative symbols uPAR)[60]. PLAUR interacts 

with uPA resulting in enhanced activation of cell-bound plasminogen[61] and therefore plays 

a role in PAS. PLAUR has been implicated in many physiological processes; including cell 

migration, proliferation, differentiation and tissue fibrosis[62]. These findings further support 

our findings on SERPINE1 polymorphism and asthma, implicating that PAS is a candidate 

pathway for enhanced airway remodeling in asthma. 

 

We conclude that our findings may suggest a role of the SERPINE1 gene in the 

progression, remission and severity of asthma, likely via the effects of PAI-1 on airway 

inflammation and remodeling. Clearly, functional studies need to address the exact 

contribution of PAI-1 in this process and the interaction with ICS treatment. 
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Figure 1:  Mean annual change in FEV1 and the SERPINE1 4G/5G polymorphism (dominant 
genetic model) 
 
 
Results of linear mixed effect model analyses; Estimates and P-values given of the analyses on the dominant 
genetic model (group 4G/4G compared to the combined groups 4G/5G & 5G/5G). Corrected for use of inhaled 
corticosteroids. FEV1 = forced expiratory volume in one second; SERPINE1 = serine protease inhibitor type 1 
 



   
   

 

 

 

 

 



   
   

 

 

 

Figure 2:  Change in FEV1 after starting treatment with inhaled corticosteroids stratified by 
the SERPINE1 4G/5G polymorphism (dominant genetic model) 
 
 
Results of linear mixed effect model analyses. FEV1 levels before the start of inhaled corticosteroids were set to 
zero per genotype-group; Estimates and P-values given of the analyses on the dominant genetic model (group 
4G/4G compared to the combined groups 4G/5G & 5G/5G) on the level of FEV1 before the start of inhaled 
corticosteroids compared to the level of FEV1 after the start of inhaled corticosteroids. FEV1 = forced expiratory 
volume in one first second; SERPINE1 = serine protease inhibitor type 1 
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