Bosentan does not improve pulmonary hypertension and lung remodeling in heart failure

Bao Hua Jiang, MD, PhD, Jean-Claude Tardif, MD, Yanfen Shi, MD, PhD, and Jocelyn Dupuis, MD, PhD

Montreal, Quebec, Canada

Short Title: Bosentan in Ischemic Heart Failure

Word Count: 3410 (text only)

From the Research Center, Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.

Reprint requests: Jocelyn Dupuis, MD, PhD, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada. Phone: (514) 376-3330 ext. 3542; Fax: (514) 376-1355; E-mail: jocelyn.dupuis@bellnet.ca

Supported by the Canadian Institutes of Health Research and the Montreal Heart Institute Foundation.
ABSTRACT

Pulmonary hypertension (PH) and right ventricular (RV) dysfunction associated with heart failure (HF) carry a poor prognosis. Although endothelin receptor antagonists (ERAs) demonstrated benefits in pulmonary arterial hypertension, their efficacy in PH associated with HF was not specifically evaluated.

Two weeks after myocardial infarction (MI), rats received bosentan (100 or 200 mg kg$^{-1}$ d$^{-1}$) or no treatment for 3 weeks. PH, RV hypertrophy and function as well as lung remodeling and function were evaluated.

LV echo wall motion abnormality and function measured before treatment (2 weeks after MI) and after treatment (5 weeks after MI) were similar in MI control and MI treatment groups. HF induced PH and RV hypertrophy compared with sham: RV systolic pressure 39±5 vs. 23±0.8 mmHg and RV/LV+Septum weight 52±7 vs. 24±0.5% (all p<0.01). Bosentan did not significantly modify these parameters. Bosentan also did no improve depressed RV function measured by echo from the RV myocardial performance index and tricuspid annular plane systolic excursion. Respiratory pressure-volume relationship revealed that HF caused a restrictive lung syndrome with histological lung remodeling and fibrosis, also not improved by bosentan.

Dual ERA therapy with bosentan does not reduce PH, RV hypertrophy and lung remodeling and dysfunction associated with ischemic HF.

KEYWORDS: Pulmonary venous hypertension, endothelin receptor antagonist, bosentan.
Although endothelin receptor antagonists (ERAs) demonstrated benefits in pulmonary arterial hypertension (PAH), their efficacy in pulmonary hypertension (PH) associated with heart failure (HF) was not specifically evaluated. We hypothesized that ERAs may selectively improve PH and right ventricular (RV) function by reducing lung remodeling associated with HF. PH associated with HF reduces exercise capacity and carries a poor prognosis, especially when associated with RV dysfunction [1]. The mechanisms responsible for the pulmonary manifestations of chronic HF involve both pulmonary vascular and alveolar septa structural remodeling characterized by thickening of the capillary endothelial and alveolar epithelial cell basement membranes with abundant proliferation of myofibroblasts (MYFs) and excess collagen with reticulin deposition [2-5]. This causes a restrictive lung syndrome contributing to the functional limitation of HF.

Substantial evidence demonstrates that activation of the endothelin (ET) system in HF correlates with disease severity and prognosis [6]. Endothelin-1 (ET-1) is a powerful vasoconstrictor and proliferative peptide produced by endothelin cells and also can be produced from cardiomyocytes in pathological situations. Plasma concentration of ET-1, which may originate from the lungs, is increased in patients with HF [7, 8]. Indeed, previous studies have demonstrated an up-regulation of ET-1 gene expression and an increased production of ET-1 in HF lungs [9-11]. The expression of endothelin converting enzyme activity, which is responsible for the conversion of the precursor of ET-1 (big ET-1) into mature ET-1, is also increased in HF lungs [9]. Since the lung is the major site for both clearance and production of ET-1, it may therefore represent a preferred target organ for this peptide in HF [12, 13]. It is currently accepted that lung MYFs play a central role in lung fibrotic disorders [14] and our previous results have revealed important lung MYFs proliferation in rats with ischemic HF [3]. Lung MYFs abundantly express ET$_A$ and ET$_B$ receptors that both stimulate cell proliferation [15].
Other studies also reported that ET-1 can stimulate MYFs proliferation, chemotaxis and collagen synthesis [16-18]. Activation of the ET-1 system in HF could therefore significantly contribute to lung remodeling and the pulmonary manifestation of left heart disease.

ERAs have demonstrated anti-proliferative and anti-fibroblastic effects [15, 19] and their effectiveness for the therapy of certain forms chronic PAH (idiopathic, familial or associated with connective tissue disease) are already firmly established. Although clinical trials using endothelin receptor antagonists in HF such as ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) and REACH (Research on Endothelin Antagonism in Chronic Heart Failure) suggested no overall benefit in the treatment of subjects with HF [20], none of these however specifically evaluated the effect of ERAs on pulmonary structural remodeling, lung function, PH and RV dysfunction associated with HF. Whether ERAs would be of benefit in the therapy of patients with HF and significant associated PH therefore remains unanswered.

In this study, we evaluated the effects of bosentan, a dual ERA, on pulmonary hypertension, lung structural remodeling and function and RV function in rats with ischemic HF.

METHODS

The study protocol was approved by the animal ethics and research committee of the Montreal Heart Institute and conducted according to guidelines from the Canadian council for the care of laboratory animals. The investigation conforms with the *Guide for the Care and Use of Laboratory Animals* published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).
Experimental protocol

Rats were submitted to myocardial infarction (MI) or sham surgery as previously described [21]. Briefly, a lateral thoracotomy was performed and MI was induced by ligating the proximal left anterior descending coronary artery. The sham group was also submitted to thoracotomy but without ligation of the coronary artery. Twenty-four hours after MI surgery, the rats were anesthetized with xylazine (10 mg/kg) and ketamine (50 mg/kg). Blood samples were collected by subclavian vein puncture and immediately centrifuged. Plasma was stored at -80°C until troponin-T concentration was analyzed by standard electrochemiluminescence immunoassay (ECLIA) using the Cobas e 601 (Roche). To maximize the likelihood for the development of HF with PH, only the animals with medium to large MI, evaluated by echocardiography 2 weeks after MI surgery, were included in this study. This was defined as left ventricular (LV) wall motion abnormalities involving more than 30% of the segments evaluated in the basal and mid short axis views. After echocardiographic evaluation, the rats with medium to large MI were randomly divided into 3 groups: MI+Bosentan (100 or 200 mg kg⁻¹ d⁻¹ in food; n=13 and 11) treatment group and MI group without treatment (n=12). These therapies lasted for 3 weeks. The sham group received no treatment for the same period (n=13). All animals were maintained on a light–dark (12 h/12 h) cycle receiving water and food ad libitum.

Transthoracic echocardiographic study

Left ventricular and RV geometries and functions for all rats were performed 2 and 5 weeks after MI surgery, using a phased-array probe 10S (4.5-11.5 Megahertz) linked to a Vivid 7 system (GE Healthcare Ultrasound, Horten, Norway) [22, 23].
In vivo lung function test and hemodynamic measurements

After anesthesia with xylazine (10 mg/kg) and ketamine (50 mg/kg), the trachea was isolated and connected to a computer-controlled, small-animal ventilator (FlexiVent, Scireq, Montreal, QC, Canada) to evaluate lung function. Lung compliance and elastance were determined and a lung pressure-volume (P-V) loop was performed and was analyzed using the Salazar-Knowles equation: \(V = A - B \cdot e^{-KP} \)

Where \(A \) is the estimate of the inspiratory capacity

\(B \) equals total lung capacity – \(V \) (\(P = 0 \))

\(K \) is the curvature parameter.

Afterwards, high fidelity pressure catheters (Millar Instruments, Houston, TX) were inserted and advanced into the RV and LV to measure the hemodynamics using a powerlab polygraph System (AD Instrument, Colorado Springs, CO).

Morphometric and histological measurements

The presence of pulmonary edema was evaluated by measuring the ratio of lung dry/wet weights of the right middle lung lobe. The left lung was perfusion fixed with OCT compound (Sakura, Torrance, CA) and frozen in 2-methylbutane prechilled with liquid nitrogen. To quantify collagen deposition in the lungs tissue (n=7, 10, 8 and 7 in Sham, MI, MI+Bos100 and MI+Bos200 group respectively), Masson’s trichrome staining was performed with standard protocols and was analyzed by the Image-pro Plus 6.2 software (Media Cybernetics, Bethesda, MD). The proportion of collagen deposition was calculated as the sum of stained collagen tissue divided by the sum of all stained muscle and connective tissue in the visual field.

The heart was removed and dissected. The left and right ventricles were separated and RV hypertrophy (RVH) was assessed by the ratio of the RV/LV+Septum weights. For MI,
MI+Bos100 and MI+Bos200 rats, the LV scars were dissected and weighed and their surface areas were determined by planimetry.

Statistical analysis

All values are expressed as mean ± SEM. The 4 experimental groups were compared by one-way analysis of variance (ANOVA) followed by the Fisher’s post hoc test for multiple comparisons. Values of p<0.05 were considered to be statistically significant.

RESULTS

There was no mortality during the 3 weeks treatment period starting 2 weeks after MI in any study group. Baseline echocardiographic LV wall motion abnormality and wall motion score index (WMSI) were comparable among the MI and MI+Bos100 and MI+Bos200 groups (table 1) and remained similar 5 weeks after MI (table 2). Compared with the sham rats, the 24 h troponin-T values were significantly and similarly increased in the MI and MI+Bos100 groups (table 1). In the MI+Bos200 groups, troponin T was not different than in the MI+Bos100 group but slightly and significantly lower than in the MI control group.

Effects of bosentan on systemic hemodynamics, LV remodeling and function

Heart rates were comparable among all groups. There was decreased mean arterial pressure (MAP) 5 weeks after MI that was not significantly affected by therapy. Compared with sham (12±0.9 mmHg), HF increased in left ventricular end-diastolic pressure (LVEDP, 28±3 mmHg) (p<0.01) and non significantly reduced cardiac output as measured by echo (table 2). Bosentan did not reduce LVEDP at both low and high dosages and did not affect cardiac output. Indices of
LV contractility [(+) dP/dt] and relaxation [(-) dP/dt] were reduced after MI but were not improved by bosentan. Infarct expansion measured from the ratio of scar weight and surface was also unaffected by bosentan therapy (table 3).

Left ventricular echocardiographic parameters (tables 1 and 2) including LV end-diastolic and end-systolic dimensions, LV end-diastolic and end-systolic areas were significantly increased in the MI group (p<0.0001) 2 and 5 weeks after MI. This was associated with depressed systolic function with significantly reduced LV fractional shorting (FS) and LV fractional area change (FAC) (p<0.0001) in the MI group compared with the sham group. These parameters of LV remodeling and dysfunction were not significantly modified by bosentan treatment at both low dose and high dosage (fig.1A, 1B and table 2).

Effects of bosentan on pulmonary hemodynamics, RV remodeling and function

Compared with sham rats (23±0.8 mmHg), HF rats developed moderate PH with increased RV systolic pressure (RVSP) of 39±5 mmHg (p<0.01), while PH was not improved by bosentan (fig. 2A). CHF induced RVH with RV/LV+Septum weights ratio of 52±7% compared to 24±0.5% in the sham group (p<0.01). Bosentan did not change this ratio after therapy (fig. 2B).

Right ventricular echocardiography (tables 1 and 2) demonstrated increased RV tricuspid valve closing to opening time (TVc-o) in the MI group compared with the sham group, which were not improved by bosentan treatment. Moreover, RV myocardial performance index (RVMPI) derived from the TVc-o and RV ejection time parameters was greatly increased (worse function) in HF (p<0.01) and was not improved by bosentan therapy (fig. 1C). Furthermore, RV systolic function measured by tricuspid annulus plane systolic excursion (TAPSE) was significantly reduced in the MI group and was not improved by bosentan (fig. 1D).
Effects of bosentan on pulmonary structural remodeling and function

The ratio of the wet lung weight/body weight increased by about 66% after MI (p<0.01, fig. 3A) and the dry lung/body weight ratio was increased by 55% (p<0.01) providing evidence of substantial pulmonary remodeling: treatment with bosentan did not reverse the increased ratio (fig. 3B). The dry/wet lung weight ratio was however comparable among all groups, suggesting that no significant pulmonary edema occurred (fig. 3C). The lung tissue collagen deposition (fig. 4) was greater in MI than in sham rats (14.5±3.0% vs. 5.7±0.5%; p<0.01) and unaffected by bosentan treatment (14.2±3.3% at 100 mg and 14.4±2.9% at 200 mg).

Heart failure significantly reduced pulmonary function with a decreased compliance (fig. 5A) and caused a restrictive lung syndrome with a downward shift of the lungs pressure-volume loop (fig. 5B); this dysfunction was not improved by bosentan.

Discussion

We evaluated the effects of endothelin receptor blockade on PH, lung structural remodeling and pulmonary function in rats with ischemic HF. Heart failure induced secondary PH with lung dysfunction and important structural remodeling characterized by excessive collagen deposition. This was associated with the development of RV dysfunction and RVH. Therapy with the dual ERA bosentan did not improve PH, lung structural remodeling and lung dysfunction and also did not prevent RVH. Bosentan also had no effect on LV remodeling and function as scar size and echocardiographic parameters of LV function remained largely unchanged. These data suggest that endothelin receptors do not play central roles on PH and lung structural remodeling associated with ischemic HF in rats.
Effects of bosentan on lung structural remodeling and function

The repair process in response to lung injury is characterized by the proliferation of MYFs that can originate from resident lung cells or from marrow derived cells [14, 24, 25]. These cells are important modulators of lung fibrotic disorders and also play an important role in lung structural remodeling associated with HF [3]. Myofibroblasts abundantly express both ET\textsubscript{A} and ET\textsubscript{B} receptors and both receptors stimulate isolated lung MYFs proliferation in response to ET-1 stimulation [15]. Lungs from HF rats exhibit higher mRNA levels of collagen, fibronectin and transforming growth factor-\(\beta\)1 and factor-\(\beta\)3 [21]. Kapanci et al. previously also demonstrated alveolar septa proliferation of MYFs in human post-capillary pulmonary hypertension, non-observable in pre-capillary pulmonary hypertension [26]. Although MYFs proliferation and fibrosis could play an initially protective role against the insulting increase in capillary pressure and prevent the development of alveolar edema, in the longer term however, this response likely becomes maladaptive and contributes to a restrictive lung syndrome, PH and RVH.

In this study, we found that HF induced significant pulmonary remodeling with increased lung weight and excessive lung collagen deposition; but this was not improved by the treatment with bosentan. These results suggest that dual ERA therapy with bosentan might not be useful for the treatment of PH and lung remodeling associated with HF. Although ERAs have been demonstrated to have anti-proliferative and anti-fibroblastic effects [15, 19], other more important and predominant mechanism may be involved in the lung remodeling of HF. Furthermore, since the therapy was started 2 weeks after MI, when lung structural remodeling was already well established, therapy may have been unable to reverse the disease process at this more advanced stage.
Effects of bosentan on PH and RV and LV remodeling and function

Myofibroblasts proliferation and excessive collagen deposition in the lung contribute to the development of secondary PH and RVH [3, 25]. Although bosentan has demonstrated its capacity to improve chronic PAH of various etiologies, its effectiveness in PH associated with left heart disease has not been specifically tested. In the current study, we demonstrated that bosentan had no detectable effect on PH associated with LV systolic dysfunction. Furthermore, RV function as measured by both RVMPI and TAPSE as well as RVH as measured by RV/LV+Septum weight were not improved. In a previous study, we showed that the selective ET\(_A\) receptor antagonist LU-135252 (darusentan) started 24 h after coronary artery ligation in the rat MI model significantly reduced the severity of PH, but also failed to reduce scar size, lung fibrosis and RVH while it did not prevent medial hypertrophy of resistance pulmonary arteries (50 µM to 200 µM) [21]. This would suggest that ET receptor selectivity does not influence the effect of ERA therapy on lung remodeling in HF.

In the current study, therapy was started two weeks after MI, when LV scarring is already well established. Although 24 h troponin T values were slightly lower in the bosentan-200 group, 2-week baseline infarct size and LV function measured by cardiac ultrasound were measured prior to initiation of therapy and were similar. Bosentan had no effect on LVEDP and LV (±) dP/dt and also did not improve the LV function and geometry as evaluated by echocardiography after 5 weeks. This is consistent with previous studies in the same model [27] demonstrating the absence of improvement of left ventricular dysfunction after treatment with non-selective ERAs.
Limitations and basic and clinical relevance of this study

Use of the rat MI model in the development of drugs for the therapy of ischemic HF has been validated. Despite conflictual results in pre-clinical studies, ERAs were initially developed for the therapy of HF and are still being contemplated as potentially effective therapies. The randomized trials ENABLE and REACH suggested no overall benefit of ERA therapy with bosentan in the treatment of patients with HF [20]. It was suggested that some subjects had initial deterioration due to fluid retention, but later improvement. The EARTH (Endothelin A Receptor Antagonist Trial in Heart Failure) trial using the selective ETA antagonist darusentan [28] also showed no effect on cardiac remodeling or clinical symptoms. None of these trials was however specifically designed to address the potential role of ERAs on PH and lung structural remodeling and it remained possible that a subset of subjects with associated PH may derive benefit from ERAs therapy. PH is a frequent complication of HF that carries a poor prognosis. In a prospective study of 377 consecutive Class II to IV patients referred to a HF clinic, PH was found at catheterization in 236 patients (62%, mean PAP > 20 mmHg) [1] and together with its impact on right ventricular function was independently associated with reduced survival. In another similar study, more than moderate PH (>2.5 Wood units) was found in 36% of subjects and associated with reduced peak VO2 during exercise [29]. Death and hospitalization for HF were increased in subjects with echocardiographic evidence of PH [30]. Previous analysis of the ENABLE trial have raised the possibility that if only HF patients with raised pulmonary arterial pressures had been included, a clear benefit of treatment with ET antagonists may have emerged [31]. The current pre-clinical study carefully selected rats that developed moderate PH and found no benefit of Bosentan on PH, on RVH, on lung remodeling and fibrosis as well as on RV function and respiratory function.
Our results therefore argue against a significant role of ERAs for the therapy of both LV failure and its associated PH despite the demonstrated activation of the ET system with increased plasma ET levels correlating with the severity of HF and associated PH. Our results do not contradict the possibility the activation of the endothelin system may be deleterious and contribute to the pathophysiology of PH associated with HF. The demonstration that pharmacological blockade of the ET receptors has no effect could suggest a minor role, or that alternate pathways play a more dominant role, such as the renin-angiotensin system for example.

There is indeed basic and clinical evidence that other therapies could beneficially alter lung remodeling in HF. We recently demonstrated in the same animal model that the HMG-CoA reductase inhibitor atorvastatin importantly reduced lung remodeling and fibrosis and improved respiratory and RV function in this model [32]. Similarly, angiotensin receptor blockade with irbesartan started early after MI also prevented lung remodeling [3]. This is consistent with clinical studies demonstrating the benefit of angiotensin-converting enzyme inhibition on lung function of subjects with HF [33]. Unfortunately, other previous pre-clinical studies evaluating currently approved therapies for HF did not specifically and extensively measure RV hemodynamics and functions as well as lung morphology and functions. Nevertheless, some indices suggest that these therapies could potentially have beneficial effects on lung and RV functions. A study comparing the beta-blockers carvedilol and metoprolol used in equal beta-adrenoceptor blocking potency found that both improved LV hemodynamics, but that only carvedilol reduced myocardial fibrosis and RV hypertrophy [34]; an effect possibly attributed to the alpha-adrenoceptor blocking properties and anti-oxydant effects of carvedilol. In another study using the same model, aldosterone antagonism with spironolactone started early after coronary ligation improved LV remodeling and, interestingly, almost normalized the important increase in lung weight [35]: RV hemodynamics and lung function were however not evaluated
and these findings were not discussed by the authors. Whether or not aldosterone antagonism could selectively target the lung in HF remains speculative, but a recent study randomized 30 subjects with HF to spironolactone or placebo for 6 months and found that active treatment improved exercise capacity and increased DLco due to an improvement in Dm [36]. Collectively, these data suggest that some therapies used in HF could have direct or indirect effects on lung remodeling, PH and RV function.

The smaller dosage of bosentan used in this trial (100 mg/kg/day) was previously demonstrated effective in numerous pathologic lung models including PAH caused hypoxia [37] and bleomycin lung fibrosis [38] and emphysema [39]. Since we also used a higher dosage (200 mg/kg/day), it is unlikely that insufficient dosing was responsible for the lack of benefit in the current study. Finally, bosentan is a dual ET-R antagonist and we cannot exclude that other ERAs with different ET_A/ET_B receptor selectivity could provide some benefit in PH associated with HF. In PAH however both ET_A-R and ET_B-R antagonists have demonstrated benefits and whether ET-R selectivity translates into any clinically significant advantage has not been demonstrated and is still a subject of debate.

Conclusions

Rats with ischemic heart failure developed moderate PH with important lung structural remodeling characterized by excessive collagen deposition and associated with RV dysfunction and RVH. These changes are not reversed by ERA therapy using bosentan. These suggest that endothelin receptors are not an attractive target for the treatment of PH, lung remodeling and RV dysfunction associated with HF.
Acknowledgments

Dr. Jocelyn Dupuis is a National Researcher of the "Fonds de la Recherche en Santé du Québec". The authors would like to thank Emma Dedelis, David Belzile, and Quang Trinh Nguyen for their expert technical assistance.

Disclosures

Supported by the Canadian Institutes of Health Research and by the Montreal Heart Institute Foundation. Dr. Tardif holds the Canadian Pfizer Research Chair on atherosclerosis.
References

Figure Legends

Figure 1 Effect of bosentan on (A) left ventricular fractional shorting (LVFS) and (B) LV fractional area changing (LVFAC) and (C) right ventricular myocardial performance index (RVMPI) and (D) tricuspid annulus plane systolic excursion (TAPSE) after treatment in Sham, MI, MI+Bos100 and MI+Bos200 rats. Results are expressed as mean±SEM. †p<0.05 vs. Sham; ‡p<0.01 vs. Sham, *p<0.0001 vs. Sham.

LVFS: Left ventricular fractional shortening
LVFAC: Left ventricular fractional area changing
RVMPI: Right ventricular myocardial performance index
TAPSE: Tricuspid annulus plane systolic excursion
Figure 2 Effect of bosentan on (A) right ventricular systolic pressure (RVSP) and (B) right ventricular hypertrophy (RVH) after treatment in Sham, MI, MI+bos100 and MI+Bos200 rats. Results are expressed as mean±SEM. †p<0.05 vs. Sham; ‡p<0.01 vs. Sham.

Figure 3 Effect of bosentan on (A) wet lung weight/body weights, (B) dry lung weight/body weights and (C) dry/wet lung weights ratios after treatment in Sham, MI, MI+Bos100 and MI+Bos200 rats. Results are expressed as mean±SEM. †p<0.05 vs. Sham; ‡p<0.01 vs. Sham.
Figure 3

A
Wet Lung / Body Weight

B
Dry Lung / Body Weight

C
Dry / Wet Lung Weight

† P < 0.05 vs. Sham
‡ P < 0.01 vs. Sham
Figure 4 Effect of bosentan on pulmonary structural remodeling assessed by Masson’s trichrome staining for collagen in blue (upper pictures) and by quantitative analysis for lung collagen deposition (lower graph) in Sham, MI, MI+Bos100 and MI+Bos200 rats. Results are expressed as mean±SEM. †p<0.05 vs. Sham.
Figure 5 Effect of bosentan on lung function (A) on compliance and (B) by pressure-volume (P-V) loops technique after treatment in Sham, MI, MI+Bos100 and MI+Bos200 rats. Results are expressed as mean±SEM. †p<0.05 vs. Sham; ‡p<0.01 vs. Sham.
<table>
<thead>
<tr>
<th></th>
<th>Baseline values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
</tr>
<tr>
<td>Troponin-T (µg/L)</td>
<td><0.01</td>
</tr>
<tr>
<td>LV wall motion abnormality (%)</td>
<td>0</td>
</tr>
<tr>
<td>LV wall motion score index</td>
<td>1.01±0.01</td>
</tr>
<tr>
<td>LV end-diastolic dimension (mm)</td>
<td>7.4±0.1</td>
</tr>
<tr>
<td>LV end-systolic dimension (mm)</td>
<td>3.6±0.2</td>
</tr>
<tr>
<td>FS (%)</td>
<td>51.2±1.8</td>
</tr>
<tr>
<td>LV end-diastolic area (mm²)</td>
<td>44.7±2.3</td>
</tr>
<tr>
<td>LV end-systolic area (mm²)</td>
<td>15.6±1.4</td>
</tr>
<tr>
<td>FAC (%)</td>
<td>65.8±2.0</td>
</tr>
<tr>
<td>RVDd (mm)</td>
<td>3.3±0.1</td>
</tr>
<tr>
<td>RVET (msec)</td>
<td>83.4±1.9</td>
</tr>
<tr>
<td>TVc-o</td>
<td>91.7±2.8</td>
</tr>
<tr>
<td>RVMPI</td>
<td>0.10±0.04</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>3.1±0.2</td>
</tr>
</tbody>
</table>

TABLE 1. Baseline of 24 hours troponin-T and 2 weeks echocardiographic parameters
LV: left ventricular; FS: LV fractional shortening; FAC: LV fractional area changes; RVDd: right ventricular end-diastolic dimension; RVET: right ventricular ejection time; TVc-o: tricuspid valve closing to opening; RVMPI: right ventricular myocardial performance index; TAPSE: tricuspid annulus plane systolic excursion.

†p<0.05 vs. Sham; ‡p<0.01 vs. Sham; *p<0.0001 vs. Sham; §p<0.05 vs. MI.
TABLE 2. Effect of bosentan on 5 weeks echocardiographic parameters

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>MI</th>
<th>Bos100</th>
<th>Bos200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac output (mL/min)</td>
<td>140±5</td>
<td>120±11</td>
<td>119±13</td>
<td>114±7</td>
</tr>
<tr>
<td>LV wall motion abnormality (%)</td>
<td>0</td>
<td>45±4*</td>
<td>48±3*</td>
<td>42±5*</td>
</tr>
<tr>
<td>LV wall motion score index</td>
<td>1.00±0</td>
<td>1.96±0.05*</td>
<td>2.00±0.07*</td>
<td>1.87±0.07*</td>
</tr>
<tr>
<td>LV end-diastolic dimension (mm)</td>
<td>7.6±0.2</td>
<td>10.9±0.2*</td>
<td>10.9±0.2*</td>
<td>11.2±0.2*</td>
</tr>
<tr>
<td>LV end-systolic dimension (mm)</td>
<td>3.7±0.2</td>
<td>9.3±0.2*</td>
<td>9.3±0.3*</td>
<td>9.5±0.3*</td>
</tr>
<tr>
<td>LV end-diastolic area (mm²)</td>
<td>48.3±2.2</td>
<td>91.1±2.6*</td>
<td>94.6±4.7*</td>
<td>96.7±4.1*</td>
</tr>
<tr>
<td>LV end-systolic area (mm²)</td>
<td>16.0±1.4</td>
<td>62.4±2.9*</td>
<td>68.5±4.7*</td>
<td>65.3±3.6*</td>
</tr>
<tr>
<td>RVDd (mm)</td>
<td>3.5±0.1</td>
<td>3.5±0.1</td>
<td>3.6±0.2</td>
<td>3.6±0.1</td>
</tr>
<tr>
<td>RVET (msec)</td>
<td>83.4±2.5</td>
<td>83.6±2.9</td>
<td>86.4±1.8</td>
<td>80.7±2.3</td>
</tr>
<tr>
<td>TVc-o</td>
<td>97.1±4.1</td>
<td>120.1±5.1‡</td>
<td>127.9±8.1‡</td>
<td>113.9±5.4</td>
</tr>
</tbody>
</table>

LV: left ventricular; FS: LV fractional shortening; FAC: LV fractional area changes; RVDd: right ventricular end-diastolic dimension; RVET: right ventricular ejection time; TVc-o: tricuspid valve closing to opening.

†p<0.05 vs. Sham; ‡p<0.01 vs. Sham; *p<0.0001 vs. Sham.
TABLE 3. Effect of bosentan on hemodynamic and morphometric parameters

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>MI</th>
<th>Bos100</th>
<th>Bos200</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (beats/min)</td>
<td>236±12</td>
<td>256±9</td>
<td>238±12</td>
<td>240±7</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>115±5</td>
<td>98±6†</td>
<td>99±6†</td>
<td>96±2‡</td>
</tr>
<tr>
<td>LVEDP (mmHg)</td>
<td>12±0.9</td>
<td>28±3†</td>
<td>22±4†</td>
<td>22±3†</td>
</tr>
<tr>
<td>LV (+)dP/dt (mmHg/s)</td>
<td>6924±490</td>
<td>4913±552‡</td>
<td>5551±494†</td>
<td>4956±163‡</td>
</tr>
<tr>
<td>LV (-)dP/dt (mmHg/s)</td>
<td>5264±402</td>
<td>2896±313*</td>
<td>3218±310*</td>
<td>3175±143*</td>
</tr>
<tr>
<td>RV (+)dP/dt (mmHg/s)</td>
<td>1284±84</td>
<td>1879±215†</td>
<td>1878±240†</td>
<td>1744±182</td>
</tr>
<tr>
<td>RV (-)dP/dt (mmHg/s)</td>
<td>796±64</td>
<td>1233±180†</td>
<td>1213±190†</td>
<td>1190±132</td>
</tr>
<tr>
<td>BW (g)</td>
<td>429±10</td>
<td>424±14</td>
<td>422±16</td>
<td>424±7</td>
</tr>
<tr>
<td>Scar weight (g)</td>
<td>N/A</td>
<td>0.12±0.01*</td>
<td>0.13±0.01*</td>
<td>0.11±0.01*</td>
</tr>
<tr>
<td>Scar / BW (%)</td>
<td>N/A</td>
<td>0.03±0.00*</td>
<td>0.03±0.00*</td>
<td>0.03±0.00*</td>
</tr>
<tr>
<td>Scar surface (mm²)</td>
<td>N/A</td>
<td>111.7±3.7*</td>
<td>120.8±9.0*</td>
<td>108.7±5.7*</td>
</tr>
<tr>
<td>Scar weight/surface (g/mm²)</td>
<td>N/A</td>
<td>0.09±0.01*</td>
<td>0.09±0.01*</td>
<td>0.11±0.00*</td>
</tr>
</tbody>
</table>

HR: heart rate; MAP: mean arterial pressure; LV: left ventricular; RV: right ventricular; LVEDP: LV end diastolic pressure; BW: body weight.
†p<0.05 vs. Sham; ‡p<0.01 vs. Sham; *p<0.0001 vs. Sham.