Experience with inhaled iloprost and bosentan in portopulmonary hypertension

MM Hoeper,1 HJ Seyfarth,2 G Hoeffken,3 H Wirtz,2 E Spiekerkoetter,1 MW Pletz,1 T Welte,1 M Halank3

From the 1Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany, 2Department of Respiratory Medicine, University of Leipzig, Germany and 3Department of Internal Medicine I, Carl-Gustav-Carus University Dresden, Germany

Correspondence: Marius M. Hoeper, MD
Department of Respiratory Medicine
Hannover Medical School
30623 Hannover
Germany
Phone: +49 511 532 3530
Fax: +49 511 532 8536
E-mail: hoeper.marius@mh-hannover.de

Word count: 3,433

Keywords: Hypertension, pulmonary; portopulmonary hypertension; cirrhosis; bosentan; iloprost
Abstract

Novel treatments such as prostanoids or endothelin receptor antagonists have been introduced for various forms of pulmonary arterial hypertension but the long-term effects of these treatments on portopulmonary hypertension are unknown.

In a retrospective analysis, we assessed the safety and efficacy of inhaled iloprost, a prostacyclin analogue, and bosentan, an endothelin receptor antagonist, in patients with portopulmonary hypertension. Thirty-one consecutive patients with Child A or B cirrhosis and severe portopulmonary hypertension were treated up to three years with either inhaled iloprost (n = 13) or bosentan (n = 18) and the effects on exercise capacity, hemodynamics and survival were evaluated.

In the iloprost group, the survival rates at 1, 2 and 3 years were 77%, 62% and 46%, respectively. In the bosentan group, the respective survival rates were 94%, 89% and 89% (p = 0.029 by log-rank analysis). Event-free survival rates, i.e. survival without transplantation, right heart failure or clinical worsening requiring the introduction of a new treatment for pulmonary hypertension, was also significantly better in the bosentan group (p = 0.017 by log-rank analysis). Bosentan had significantly better effects than inhaled iloprost on exercise capacity as determined by the 6 min walk test as well as on hemodynamics. Both treatments proved to be safe, especially in regards of liver function.

In this case series of patients with well-preserved liver function and severe portopulmonary hypertension, treatment with both inhaled iloprost and bosentan appeared to be safe. Patients treated with bosentan had higher survival rates, but prospective controlled studies are required to confirm these findings.

Word count abstract: 254
The term portopulmonary hypertension refers to the development of pulmonary arterial hypertension (PAH) in patients with portal hypertension, a rare but serious complication occurring in 1-2% of patients with cirrhosis [1, 2]. Affected patients typically complain of progressive dyspnea on exertion and may show signs of right heart dysfunction. Left untreated, portopulmonary hypertension carries a poor prognosis with 1-year mortality rates ranging between 24 and 60% [3, 4].

Treatment of portopulmonary hypertension has never been assessed in randomized clinical trials, especially since this group of patients has been excluded from almost all large clinical studies that have been performed in the field of PAH. Case reports and smaller case series suggest that treatments that are effective in other forms of PAH, i.e. prostanoids, phosphodiesterase-5 inhibitors and endothelin receptor antagonists, may also be beneficial in patients with portopulmonary hypertension [5-7]. The long-term safety and effectiveness of these treatments in portopulmonary hypertension, however, has never been evaluated.

In the present study, we assessed the 3-year experience with two substances, bosentan, an endothelin receptor antagonist and inhaled iloprost, a prostanoid, in patients with portopulmonary hypertension. Preliminary data including some of these patients have already been presented in previous publications, but the present study, for the first time, evaluated the effects of the two treatments for an extended period of time [7-10].

**Patients and Methods**

We performed a retrospective cohort study of patients with cirrhosis and portopulmonary hypertension who started treatment with either inhaled iloprost or bosentan between 1999 and 2004. The analysis was based on medical record reviews. This study enrolled all but two patients with portopulmonary hypertension who were seen at the participating centers during the indicated time period, regardless of their Child class. The two patients not included suffered from alcoholic cirrhosis and psychotic disorders and were felt to be too noncompliant so that no specific pharmacotherapy for pulmonary hypertension was instituted.
No medication has been explicitly approved for portopulmonary hypertension in Europe. All patients were informed about this fact and consented to both treatment and the scientific evaluation of their data. This approach and the present study were approved by the institutional review board of the participating centers.

The choice between bosentan or iloprost treatment was neither randomized nor stratified and was based on the preferences of the patients and their physicians. Iloprost was given 6 times daily at a dose of 5 µg at the mouthpiece using standard nebulizers. Bosentan was started at a dose of 62.5 mg bid for 4 weeks followed by 125 mg bid as target maintenance dose. Liver aminotransferases were monitored in 4-weekly intervals and comprehensive evaluations of laboratory results were performed 2-3 times per year. Elevated aminotransferase levels were managed according to the recommendations in the bosentan summary of product characteristics.

All patients were regularly seen for follow-up examinations at the outpatient clinics of their university hospitals in 3-4 monthly intervals. Follow-up investigations included the abovementioned laboratory tests as well as assessment of functional class, 6 min walk test, pulmonary function testing, and blood gas analysis. Right heart catheterizations were performed at baseline in all patients and during irregular follow-up intervals as determined by the clinical situation. All hemodynamic assessments were done in the morning before patients took their medication.

**Analysis**

All data are expressed as mean ± standard deviation (SD). Differences between the two groups at baseline were assessed by Mann-Whitney rank sum test for continuous variables and by Fisher’s exact test for categorical variables. For the analysis of within-group changes the Wilcoxon signed-rank test was used, whereas between-group changes were analysed with the Mann-Whitney U test. Severity of liver disease was expressed by the Child-Pugh class and by the MELD score [11, 12]. In patients receiving oral anticoagulants an INR value of 1.2 was used for calculation of Child class and MELD score.
The primary study outcome was survival; secondary outcomes included event-free survival, hemodynamics, functional class, 6 min walk distance and safety. There was no a priori hypothesis on the superiority of one treatment over the other. Overall survival and event-free survival (i.e. survival without transplantation or clinical deterioration requiring the introduction of a new compound for the treatment of pulmonary hypertension) were estimated using the Kaplan-Meier method and differences were evaluated with a stratified log-rank test. The Cox proportional hazard analysis was used to adjust for known prognostic factors. The cut-off date for all analyses was set for individual patients at 36 months after treatment with either inhaled iloprost or bosentan was started, or at October 31st, 2006 for patients who had not completed the 36 months observation period at that time. For all analyses, a p-value < 0.05 was considered statistically significant.

**Results**

Thirteen patients were treated with inhaled iloprost (Hannover, n = 8; Leipzig, n = 4 and Dresden, n = 1) and 18 with bosentan (Hannover, n = 13; Leipzig, n = 2 and Dresden, n = 3). The baseline characteristics of these patients are shown in table 1. The most common underlying liver disease was alcoholic cirrhosis and the vast majority of patients presented in Child-Pugh class A. All patients suffered from severe portopulmonary hypertension according to a recent definition [1, 13] and there were no significant differences at baseline between both groups in severity of the underlying liver disease, functional class, 6 min walking distance and hemodynamics. There were no correlations between the severity of liver disease as expressed by the MELD score and variables reflecting severity of pulmonary hypertension, such as 6 min walk distance, right atrial pressure, mean pulmonary arterial pressure, cardiac index and pulmonary vascular resistance (data not shown).

**Outcome**

During the 3-year observation period, 10 patients died, 8 in the iloprost group and 2 in the bosentan group. Six of the eight deaths in the iloprost group were caused by right heart
failure; one patient died from variceal bleeding (Child A at baseline) and one patient died after combined liver and lung transplantation (Child B at baseline).

Out of the two patients who died in the bosentan group, one died from right heart failure and one from progressive liver failure (Child A at baseline). The patient who died from right heart failure suffered from alcoholic cirrhosis with severe portopulmonary hypertension and presented in functional class IV at baseline. The initial response to bosentan treatment was excellent and the patient was in functional class II three months later. He was then lost to follow-up but was readmitted 6 months later, again presenting in functional class IV with advanced heart and kidney failure. The patient reported that he had started drinking alcohol again and that he had stopped taking bosentan several weeks earlier. He died from multiorgan failure a few days later. The patient who died from liver failure suffered from cryptogenic cirrhosis and was in Child-Pugh class A when portopulmonary hypertension was diagnosed. Dyspnea improved with bosentan treatment but one year later the patient presented with progressive hepatic dysfunction. Bosentan was discontinued but the patient died within one month from liver failure. His caregivers felt it unlikely that bosentan had contributed to liver failure because aminotransferase levels had been in the normal range at all times during bosentan exposure.

In the iloprost group, the survival rates at 1, 2 and 3 yrs were 77%, 62% and 46%, respectively. In the bosentan group, the respective survival rates were 94%, 89% and 89%. The difference between both groups was statistically significant (p = 0.029 by log-rank analysis; Fig. 1a).

Event-free survival rates, i.e. survival without transplantation, right heart failure or clinical worsening requiring the introduction of a new treatment for pulmonary hypertension, was also significantly better in the bosentan group (p = 0.017 by log-rank analysis). Among the 13 patients who started on inhaled iloprost, only three (23%) continued this treatment for the entire 3-year observation period without clinical worsening; one patient died before treatment was changed, and one patient underwent combined liver and lung transplantation but died 6 months later from a ruptured splenic artery aneurysm. Five patients required transition to intravenous prostacyclin treatment; four of them died 1, 2, 3, and 6 months later, respectively,
and one patient survived until the end of the observation period (24 months after transition from inhaled to intravenous iloprost). Four patients had bosentan added to their medication (one of them was transitioned to bosentan for convenience while being stable on iloprost treatment for 2 years; for the purposes of this analysis, this patients was considered stable on iloprost for the whole observation period); three of these patients were alive at the end of the observation period and one died after 27 months.

Among the 18 patients who started on bosentan, fourteen patients (78%) continued treatment throughout the observation period without a clinical event; two patients required addition of sildenafil because of clinical worsening; both patients had functional improvement (6 min walk distance improved by 10 m and 62 m after 3 months, respectively) and survived until the end of the follow-up period. As described above, two patients died. None of the patients in the bosentan group had to be transitioned to intravenous prostacyclin treatment and none required transplantation. The Kaplan-Meier curves for event-free survival of both groups are depicted in Fig. 1b.

Cox proportional hazard analysis

The Cox proportional hazard analysis was performed to adjust for baseline factors that may have influenced the present findings. Two different types of analyses were performed, a primary analysis adjusted for variables of known prognostic significance and a secondary step-wise variable selection to support the findings of the adjusted analysis. With the primary analysis including the variables medication, MELD-score, Child class, NYHA class, 6 min walk distance, right atrial pressure, mean pulmonary artery pressure, cardiac output, cardiac index, pulmonary vascular resistance and mixed venous oxygen saturation, only medication was significantly associated with survival (p = 0.021). With multivariate analysis including right atrial pressure/6 min walk distance as continuous variables and MELD-score/medication as categorical variables, only medication was significantly associated with survival (Table 3).
**Hemodynamic assessment**

Assessment of the hemodynamic changes in both treatment groups was hampered by the high incidence of clinical worsening in the iloprost-treated patients and the resulting high drop-out rate in this group. Therefore, the analysis of hemodynamic parameters was restricted to changes in hemodynamics between the baseline examination and the first follow-up catheterization which took place between 3 and 18 months after treatment was initiated (8 ± 4 months in the iloprost group and 10 ± 5 months in the bosentan group). For this time frame, data were available for 11 patients in the iloprost group and 13 patients in the bosentan group. As shown in Table 2 and Fig. 2a/b, in the iloprost group there were no significant changes in right atrial pressure, mean pulmonary arterial pressure, cardiac output, pulmonary vascular resistance and mixed-venous oxygen saturation. In contrast, all these hemodynamic variables improved substantially in bosentan-treated patients.

**Functional assessment**

Patients who started on iloprost were in functional class II (n = 1) or III (n = 12) at baseline. After one year of treatment, three patients had died; out of the remaining 10 patients, 4 were in functional class II, 5 in functional class III, and 1 in functional class IV. Out of the 5 patients who were alive after three years, two were in functional class II, two in class III and one in class IV at that time.

Among the patients who started on bosentan, 16 were in functional class III and two in functional class IV at baseline. After one year of treatment, one patient had died, 12 were in functional class II and 5 in functional class III. Out of the 10 patients who completed 3-year follow-up, 6 presented in functional class II and 4 in class III at that time.

Among the 10 iloprost-treated patients who could be assessed after one year of treatment, the 6 min walking distance increased from 367 ± 109 m at baseline to 406 ± 125 m after one year (mean difference +44 m; p = 0.278). However, after three years functional improvement was maintained only in three patients.

Among the 17 assessable patients in the bosentan group, the 6 min walking distance increased from 377 ± 64 m at baseline to 448 ± 60 m after one year (mean difference +70 m; p < 0.001
vs. baseline and \( p = 0.233 \) vs. the iloprost group). This effect was partly lost during further follow-up, but in the ten patients for whom data were available at the end of the 3-year follow-up period, 6 min walk distance was still significantly higher than at baseline (403 ± 59 m vs. 358 ± 75 m; \( p = 0.049 \)).

**Safety**

Inhaled iloprost was well tolerated by all patients and was not associated with any side effects except for mild flushing, headaches and coughing. Two patients deteriorated from Child A to Child B with no apparent relationship to iloprost treatment.

Bosentan was also well tolerated by the majority of the patients. In one patient, hepatic aminotransferases increased to more than 3 times the upper level of normal but normalized when the bosentan dose was reduced from 125 mg bid to 62.5 mg bid. Dose reduction, however, resulted in clinical worsening, but the patient improved after addition of sildenafil. No other patient had aminotransferase elevations of more than three times the upper limit of normal. Bilirubin levels at baseline and after 1, 2, and 3 years of follow-up were 26 ± 16 \( \mu \)mol/l, 26 ± 17 \( \mu \)mol/l, 24 ± 12 \( \mu \)mol/l and 24 ± 11 \( \mu \)mol/l, respectively, and MELD scores were 10 ± 3, 10 ± 3, 10 ± 2, and 9 ± 2, respectively. As noted above, one patient in the bosentan group died from progressive liver failure which was believed to be due to progression of the underlying disease and unrelated to bosentan treatment since aminotransferase levels remained normal throughout treatment.

**Discussion**

In the present case series, patients with portopulmonary hypertension treated with bosentan had a better outcome than patients treated with inhaled iloprost. Although disease severity at baseline as determined by 6 min walk distance and hemodynamic variables did not differ between both groups, survival rates at 1, 2 and 3 years were 94%, 89% and 89%, respectively, in the bosentan group, and 77%, 62% and 46%, respectively, in the iloprost group, a difference that was statistically significant. The mortality rates in the iloprost group were
similar to those reported from case series of patients with portopulmonary hypertension who did not receive targeted treatment for pulmonary hypertension [3, 4], and right heart failure was by far the most common cause of death. Thus, it is possible that bosentan treatment but not iloprost treatment improves survival in this patient population, although further data are needed to confirm this hypothesis.

What are the explanations for this observation? Most importantly, hemodynamic improvement was substantially stronger in the bosentan group than in the iloprost group. At the time of the first hemodynamic reassessment (after 8 ± 4 months in the iloprost group and after 10 ± 5 months in the bosentan group), hemodynamics were practically unchanged in the iloprost group, where the pulmonary vascular resistance had slightly increased from baseline. Some recent studies with inhaled iloprost in other forms of PAH have also failed to demonstrate a substantial hemodynamic improvement, especially when hemodynamics were not assessed immediately after inhalation [14-16]. In contrast, all relevant hemodynamic variables improved in the bosentan group, with a 37% drop from baseline in the pulmonary vascular resistance, similar to what has been reported in patients with HIV-associated PAH treated with bosentan (-43%) [17]. These differences in the hemodynamic response to treatment could explain the more profound and more sustained improvement in exercise capacity as well as the better survival of the bosentan-treated patients. However, these results have to be interpreted with caution since hemodynamics were measured at different time points and not in all patients.

There is a rapidly increasing number of case reports and case series suggesting safety and efficacy of bosentan treatment in patients with portopulmonary hypertension [7, 8, 18-22]. Evidence from experimental work as well as from histopathological and clinical studies has shown that endothelin-1 (ET-1) plays a pathogenetic role in several forms of pulmonary hypertension including idiopathic PAH (IPAH) [23, 24] and chronic thromboembolic pulmonary hypertension [25]. It has also been shown that cirrhotics with portopulmonary hypertension have significantly higher ET-1 plasma levels than cirrhotics without this complication, and it has been suggested that ET-1 may be directly involved in the pathogenesis of portopulmonary hypertension [26]. Although it is most unlikely that ET-1 is
the only pathogenetic factor involved in the development of portopulmonary hypertension, the therapeutic effects of endothelin receptor blockade support the concept of ET-1 being an important mediator in this condition.

In addition, the present data provides important safety information. The use of bosentan in patients with portopulmonary hypertension has been questioned since bosentan has a well-known hepatotoxic potential and aminotransferase elevations have been reported in 7-12% of patients exposed to this drug [27, 28]. However, these aminotransferase elevations are reversible and bosentan has not been associated with serious or permanent liver damage. Our study supports the notion that bosentan may also be safe in patients with portopulmonary hypertension, even when treatment periods are extended up to 3 years. Nevertheless, it is important to note that all patients who received bosentan in the present series had well preserved liver function and were in Child class A. One recently published case report suggests that bosentan may also be safe and effective in selected patients with more advanced liver dysfunction [29] but it needs to be kept in mind that the drug is not approved for patients with Child B or C cirrhosis, and that other treatment options such as sildenafil or intravenous prostacyclin are available for these patients, and that these options may be safer in patients with advanced liver disease. It will also be important to study the novel endothelin receptor antagonists sitaxsentan and ambrisentan in patients with portopulmonary hypertension, especially since these compounds have distinct receptor affinities and may exert different profiles regarding safety and efficacy in this group of patients.

The question why the results were less favourable with inhaled iloprost is difficult to answer. Iloprost treatment caused temporary improvement in exercise capacity but this effect was not sustained in the majority of the patients. Furthermore, as outlined above, reassessment by right heart catheterization after 8 ± 4 months of treatment did not show significant hemodynamic improvement. We cannot rule out that non-compliance in the group treated with nebulized iloprost might explain the observed differences in outcome as the regular usage of the nebulizers was not monitored. Although inhaled iloprost has been in clinical use for almost 10 years, data supporting the long-term efficacy of this treatment are sparse and a recent paper by Opitz et al. has questioned the overall efficacy of this treatment in patients
with IPAH [16]. To the best of our knowledge, long-term treatment results with inhaled iloprost in patients with portopulmonary hypertension have not been published.

This study had several limitations: The number of patients was small (although this series represents the largest population of patients with portopulmonary hypertension studied so far), the patients were not randomized (but most of the baseline variables were well matched although there was a non-significant trend toward more severe liver disease in the iloprost group which may have contributed to the worse outcome in this group), there was no formal study protocol and thus, assessments were not done at the same time points and were not complete, and treatments were not blinded (not a single randomized, controlled or blinded study has been performed in this patient population). Given the small sample sizes and the lack of randomization, the possibility remains that patients in the iloprost had a more progressive nature of their disease resulting in poorer response to treatment and poorer outcome, and we cannot exclude that significant bias has affected our results. Finally, we did not investigate the impact of treatment on portal hypertension, which will be an important issue for future studies; especially since two case reports described reduction of portal venous pressure with bosentan treatment [8, 20]. Despite these limitations, we feel that the present data provide an important signal and we call for head-to-head efficacy studies not only for portopulmonary hypertension but also for other forms of PAH.

In conclusion, this study provides preliminary evidence that bosentan is a safe and effective treatment for patients with Child A cirrhosis and severe portopulmonary hypertension, whereas the long-term efficacy of inhaled iloprost in this patient population is questionable. Further studies are required to confirm these findings.
Conflict of interest and funding

Conflict of interest

Dr. Hoeper has received speaker’s honorariums from Actelion Pharmaceuticals and Schering and served as an advisory board member for Actelion Pharmaceuticals. Dr. Seyfarth, Dr. Wirtz, Dr. Hoeffken and Dr. Halank have received speaker’s honorariums from Actelion Pharmaceuticals and Schering. The present study was not funded by a third party.

Financial support: none
References


Table 1 Baseline characteristics of the patients under study

<table>
<thead>
<tr>
<th></th>
<th>Iloprost group</th>
<th>Bosentan group</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Female/male</td>
<td>8/5</td>
<td>9/9</td>
<td>0.717</td>
</tr>
<tr>
<td>NYHA II</td>
<td>n = 1 (8%)</td>
<td>n = 0 (0%)</td>
<td>0.419</td>
</tr>
<tr>
<td>NYHA III</td>
<td>n = 12 (92%)</td>
<td>n = 16 (89%)</td>
<td>1.0</td>
</tr>
<tr>
<td>NYHA IV</td>
<td>n = 0 (0%)</td>
<td>n = 2 (11%)</td>
<td>0.497</td>
</tr>
<tr>
<td>Age (years)</td>
<td>44 ± 8</td>
<td>48 ± 11</td>
<td>0.144</td>
</tr>
<tr>
<td>6 min walk distance (m)</td>
<td>343 ± 116</td>
<td>358 ± 101</td>
<td>0.435</td>
</tr>
<tr>
<td>RAP (mmHg)</td>
<td>6 ± 5</td>
<td>9 ± 6</td>
<td>0.204</td>
</tr>
<tr>
<td>PAPmean (mmHg)</td>
<td>51 ± 7</td>
<td>52 ± 7</td>
<td>0.832</td>
</tr>
<tr>
<td>CO (l/min)</td>
<td>4.9 ± 1.6</td>
<td>4.6 ± 1.3</td>
<td>0.735</td>
</tr>
<tr>
<td>CI (l/min/m²)</td>
<td>2.6 ± 0.6</td>
<td>2.4 ± 0.6</td>
<td>0.352</td>
</tr>
<tr>
<td>PVR (dyn·s·cm⁻⁵)</td>
<td>812 ± 337</td>
<td>866 ± 422</td>
<td>0.866</td>
</tr>
<tr>
<td>Sv,O₂ (%)</td>
<td>65 ± 9</td>
<td>62 ± 8</td>
<td>0.204</td>
</tr>
<tr>
<td>FVC (% pred)</td>
<td>94 ± 15</td>
<td>92 ± 17</td>
<td>0.882</td>
</tr>
<tr>
<td>FEV₁ (% VC)</td>
<td>75 ± 6</td>
<td>73 ± 10</td>
<td>0.250</td>
</tr>
<tr>
<td>DL,CO (% pred)</td>
<td>68 ± 16</td>
<td>60 ± 17</td>
<td>0.209</td>
</tr>
<tr>
<td>Pa,O₂ (mmHg)</td>
<td>79 ± 13</td>
<td>66 ± 9</td>
<td>0.002</td>
</tr>
<tr>
<td>Pa,CO₂ (mmHg)</td>
<td>31 ± 3</td>
<td>32 ± 4</td>
<td>0.767</td>
</tr>
<tr>
<td>Etiology of cirrhosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcoholic</td>
<td>n = 6 (46%)</td>
<td>n = 11 (61%)</td>
<td>0.481</td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>n = 2 (15%)</td>
<td>n = 3 (17%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Autoimmune</td>
<td>n = 4 (31%)</td>
<td>n = 2 (11%)</td>
<td>0.208</td>
</tr>
<tr>
<td>Other</td>
<td>n = 1* (8%)</td>
<td>n = 2† (11%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Child A</td>
<td>n = 10 (77%)</td>
<td>n = 18 (100%)</td>
<td>0.064</td>
</tr>
<tr>
<td>Child B</td>
<td>n = 3 (23%)</td>
<td>n = 0 (0%)</td>
<td>0.064</td>
</tr>
<tr>
<td>MELD score</td>
<td>12 ± 3</td>
<td>10 ± 3</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Abbreviations: NYHA, New York Heart Association; RAP, right atrial pressure; PAPm, mean pulmonary artery pressure; CO, cardiac output; CI, cardiac index; PVR, pulmonary vascular resistance; Sv,O₂, mixed venous oxygen saturation; FVC, forced vital capacity; FEV₁, forced expiratory volume at 1 second; DL,CO, diffusion capacity of the lungs for carbon monoxide; n.s., not significant, not assessed; * bile duct atresia; †one cryptogenic and one idiopathic portal vein thrombosis; the MELD score is a disease severity score in patients with cirrhosis (see text for details)
Table 2 Hemodynamic changes from baseline to the first follow-up catheterization (3-18 months) in patients with portopulmonary hypertension treated with inhaled iloprost or bosentan

<table>
<thead>
<tr>
<th></th>
<th>Iloprost (n = 11)</th>
<th>Bosentan (n = 13)</th>
<th>Between group difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline 6-18 months</td>
<td>Baseline 6-18 months</td>
<td></td>
</tr>
<tr>
<td>RAP (mmHg)</td>
<td>7 ± 6 11 ± 8</td>
<td>8 ± 6 4 ± 3</td>
<td>p = 0.040</td>
</tr>
<tr>
<td>Change (p-value)</td>
<td>4 ± 11 (p = 0.320)</td>
<td>-4 ± 5 (p = 0.027)</td>
<td></td>
</tr>
<tr>
<td>PAPm (mmHg)</td>
<td>50 ± 10 53 ± 8</td>
<td>53 ± 8 45 ± 13</td>
<td>p = 0.077</td>
</tr>
<tr>
<td>Change (p-value)</td>
<td>2 ± 8 (p = 0.577)</td>
<td>-7 ± 13 (p = 0.077)</td>
<td></td>
</tr>
<tr>
<td>CO (l/min)</td>
<td>4.8 ± 1.6 4.7 ± 1.7</td>
<td>4.4 ± 1.2 5.7 ± 1.3</td>
<td>p = 0.060</td>
</tr>
<tr>
<td>Change (p-value)</td>
<td>0 ± 1.8 (p = 0.765)</td>
<td>1.2 ± 1.1 (p = 0.002)</td>
<td></td>
</tr>
<tr>
<td>PVR (dyn)</td>
<td>828 ± 349 895 ± 351</td>
<td>925 ± 473 579 ± 261</td>
<td>p = 0.022</td>
</tr>
<tr>
<td>Change (p-value)</td>
<td>73 ± 457 (p = 0.413)</td>
<td>-345 ± 361 (p = 0.008)</td>
<td></td>
</tr>
<tr>
<td>SvO2 (%)</td>
<td>65 ± 9 62 ± 11</td>
<td>61 ± 7 68 ± 5</td>
<td>p = 0.064</td>
</tr>
<tr>
<td>Change (p-value)</td>
<td>-3 ± 13 (p = 0.966)</td>
<td>6 ± 8 (p = 0.005)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: RAP, right atrial pressure; PAPm, mean pulmonary artery pressure; CO, cardiac output; PVR, pulmonary vascular resistance; SvO2, mixed venous oxygen saturation
Table 3 Multivariate Cox proportional hazard analysis relating survival time to selected variables potentially linked to outcome

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard ratio (95% confidence interval)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 min walk distance</td>
<td>0.998 (0.992-1.005)</td>
<td>0.557</td>
</tr>
<tr>
<td>Right atrial pressure</td>
<td>1.070 (0.940-1.218)</td>
<td>0.305</td>
</tr>
<tr>
<td>MELD score</td>
<td>0.473 (0.073-3.060)</td>
<td>0.432</td>
</tr>
<tr>
<td>Iloprost vs. bosentan</td>
<td>6.103 (1.039-35.859)</td>
<td>0.045</td>
</tr>
</tbody>
</table>

The MELD score is a disease severity score in patients with cirrhosis (see text for details). Right atrial pressure and 6 min walk distance were imputed as continuous variables whereas MELD score and medication were imputed as categorical variables.
Figure legends

Figure 1a/1b

Overall survival (Fig 1a) and event-free survival (Fig 1b) of patients with portopulmonary hypertension treated with bosentan or inhaled iloprost. Events were deaths, transplantation, or clinical worsening requiring the introduction of a new treatment for pulmonary hypertension.

Figure 2a/2b

Individual hemodynamic response to treatment with inhaled iloprost or bosentan, expressed as change from baseline to first follow-up measurement of mean pulmonary arterial pressure (PAPm; Fig. 2a) and pulmonary vascular resistance (PVR; Fig. 2b).
Figure 1a

Overall survival

Bosentan group

Iloprost group

p = 0.029

Months

Subjects at risk (n)

Bosentan group

Iloprost group

18 18 17 16 14 14 11
13 13 10 8 8 7 6
Figure 1b

- **Event-free survival**
  - **Bosentan group**
  - **Iloprost group**

- **p = 0.017**

- **Subjects at risk (n)**
  - Bosentan group: 18, 18, 17, 16, 14, 14, 9
  - Iloprost group: 13, 12, 10, 6, 6, 6, 2
Figure 2a

![Graph showing PAPmean (mmHg) for Iloprost group and Bosentan group with n = 11 and n = 13 respectively.](image-url)
Figure 2b

![Graph showing PVR (dynes/cm²) for Iloprost group and Bosentan group at baseline and follow-up.](image)

- **Iloprost group**: n = 11
- **Bosentan group**: n = 13